[image: image1.jpg]WIPRO

Applying Thought

Coding Guidelines

Wipro C++ Coding Guidelines

Abstract
This document describes style guidelines and programming practices for C++ code for Wipro Development.
	Anaz, Deepak, Iva, ipin,

Kalyani Angali /
June-08
	
	Mahendra B. Pai(Technical)
Soumya Menon(English) /
 Aug-08
	
	

	Prepared by/Date
	
	Reviewed by/Date
	
	Approved by/Date

	
	
	
	
	

Revision History

	Version (x.yy)
	Date of Revision
	Description of Change
	Reason for Change
	Affected Sections
	Approved By

	1.00
	30th November, 2005
	Initial Draft
	Initial Draft
	All
	

	1.01
	17th March, 2006
	Review comments incorporated
	Review
	
	

	1.02
	29th May, 2008
	Incorporate Wipro Code Checker Rules
	Revised Draft
	All
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

Table of Contents
51. File Organization

51.1 Copyright

51.2 Import/Include Declarations

61.3 Class Declarations

81.4 Function Declarations

91.5 Initializers

142. Naming Conventions

142.1 Naming Classes

142.2 Method Names

142.3 Method and Local Argument Names

152.4 Class Member Variables

152.5 Pointer Variables

152.6 Constant Variables

152.7 Reference Variables

162.8 Global Variables

162.9 Static Variables

162.10 Structure Names

162.11 Enum Names

162.12 Array Names

172.13 Ifstream Variables

172.14 Istream Variables

172.15 Ofstream Variables

172.16 Ostream Variables

172.17 Pointer, Array, and Reference Variables

192.18 Variable Names

202.19 Local Variables

233. Documentation

233.1 Comment Types and Usage

233.1.1 General comments

253.1.2 Single-line Comments

263.1.3 Multi-line Comments

273.2 File Level Documentation

283.3 Class Level Documentation

293.4 Method Level Documentation

333.5 Attribute Level Documentation

344. Formatting Conventions

344.1 Expression Formatting

344.1.1 Spacing

354.1.2 Parenthesis

374.1.3 Line Breaking

374.1.4 Operators

414.2 Indentation/Tabs/Space Policy

424.2.1 Justification

424.3 White spaces

424.4 Blank lines

434.5 Statements

434.6 Continuation

434.7 Blocks

444.8 Macros

455. Preprocessor

455.1 General

455.2 # define

465.3 #if / #elif / #else / #endif

486. Syntax Style

486.1 Memory Allocation-New/Delete

486.2 Handling

496.3 Namespaces

506.4 Templates

516.5 New-style casts

537. Programming/ Coding Standards

537.1 Pointers & References

537.2 Classes

537.2.1 Metrics

537.2.2 Design Guidelines

587.3 Functions & Methods

587.3.1 Metrics

597.3.2 Design Guidelines

667.4 Operators

687.5 Statements and Expressions

687.5.1 If :

717.5.2 For :

727.5.3 Switch :

727.5.4 While :

737.5.5 Other :

747.6 Memory Management

757.7 Security

778. Quick Reference

839. References:

1. File Organization
There should be one public, one protected, and one private section in the class declaration. They should be ordered so that the public section comes first, then the protected section, and the private section at the end.

Member functions and data should be listed logically. For example, all constructors should be grouped together, all event handling routines may be declared together, as may the routines which access member data. Each logical group of functions should have a common comment above the group explaining why they are grouped together. The order of placement could be:

· Beginning comments (see \Beginning Comments" on 3)

· cvs version information

· #include statements

· #defines

· Local data type definitions

· Local (static) function prototypes

· Local (static) data

· Externally visible functions

· Local (static) functions

Preferably there should be one class declaration per header file. In some cases, smaller but related classes may be grouped into one header file.
Typically the member functions should be "one screen view" for readability. Avoid source code files that are longer
than 500 (default value) or the specified number of lines. Similarly “one class per file” is recommended. Lengthy source code is difficult to read and maintain.
1.1 Copyright
Each file should start with a copyright notice. To avoid errors in doc comment builds, you do not want to use triple-slash doc comments, but using XML makes the comments easy to replace in the future. Final text varies by product (you should contact legal for the exact text), but should be similar to:

//---
// <copyright file="ContainerControl.cs" company="Microsoft">
// Copyright (c) Microsoft Corporation. All rights reserved.
// </copyright>
//---
1.2 Import/Include Declarations
Include statements must be located at the top of a file only. Avoid unwanted compilation side effects by "hidden" include statements deep into a source file.
#import "filename" [attributes]

#import <filename> [attributes]
Attributes
When there are one or more #import attributes, separate the attributes with either a space or a comma.

Filename
Allows you to specify which type library you want to import.

#include "path-spec"
#include <path-spec>
The path-spec is a filename optionally preceded by a directory specification. The filename must name an existing file. The syntax of the path-spec depends on the operating system on which the program is compiled.

1.3 Class Declarations
Start public, protected, private, and friend labels in column zero of class declarations. Use explicit public labels for all struct public fields and use explicit private labels for all private class members.

1.3.1 [OPTIONAL] The members of a class should be declared in the following order:
1. Declare all public data members and type definitions first.

2. Declare private or protected data members, or type definitions used in function member initialization lists or inline implementations next.

3. Declare all public member functions next, starting with the constructors and destructors.

4. Declare all remaining private or protected data members and type definitions next.
5. Declare all private or protected function members next.

6. Declare all friends at the end.
Put simple inline function definitions on the same line as their declaration. For inline functions spanning multiple lines, use a pure-block style with four-space indentation.

In general, avoid putting complex function implementations .h files.
1.3.2 [MANDATORY] Declare functions in the order public-protected-private.
1.3.3 [MANDATORY] Class should contain default constructor, copy constructor, destructor and assignment operator.

Though constructor, copy constructor, assignment operator, and destructor are not programmatically mandated, they should always be declared, even if they do not have to do anything. This is done for following reasons:

· In that way, it is clear that they are not accidentally forgotten.
· Especially when pointers are kept inside an object, these functions are necessary to ensure that the data inside the object are copied and deleted correctly.

· It serves as a single point interface for garbage collection and debugging.
1.3.4 [MANDATORY] Destructor has to be declared virtual in a base class.
1.3.5 [MANDATORY] Declare member functions const when no changes are made.

Example

class Type : public Parent {

private:

int x_;

int y_;

public:

Type();

Type(int x) : x_(x) { }

~Type();

int get_x() const { return x_; }

void set_x(const int new_x) { x_ = new_x; }

...

void display() {

...

}

};
1.3.6 [OPTIONAL] If you declare a binary operator function you should also declare an operator=function.

1.3.7 [OPTIONAL] Do not declare public or protected data members.

Public data members can directly be accessed by any user code. Protected data members can directly be accessed by inherited user code. These undermine the security of the code. Instead use public/protected member functions to return member data, which prevents unauthorized access.

1.3.8 [OPTIONAL] Declare and implement class functions instead of using compiler defaults, or disallow use by declaring function private.

If you do not define class functions (constructor, copy constructor, destructor, and assignment operator), the compiler designs it.

1.3.9 [MANDATORY] Do not use the same name for local variables / parameters and class / parent classes / parent structure variables as this would result in ambiguous and error prone code.
1.3.10 [MANDATORY] Local variables / parameters and class / parent classes / parent structure variables should differ by more than a single character.

This improves readability and prevent ambiguous code. Difference of one character is a requirement of the compiler, but developer should give different meaningful variable names.
Example

class Base {

 void foo(){

 float memberF; //Not recommended

 for(int _var2 = 0;_var2<10;_var2++){ } //Not recommended

}

private:

int member;

float Var2;

};

class Base {

 void foo(){

 float fLocal; //recommended

 for(int iValue = 0;iValue<10;iValue++){ }//recommended

}

private:

int member;

float Var2;

};
1.4 Function Declarations

Start all function definitions and declarations in column zero. Put the return value type, the function interface signature (name and argument list), and the function body open bracket each on a separate line. For functions that are more than a few lines long, put the function name after the closing bracket in a comment.
Example

void debug(const string& message);

int Class::method(const int x, const string& str)

{

.

.

.

} // method

1.4.1 [OPTIONAL] For function declarations, the leading parenthesis and the first argument should be written on the same line as the function name.

This improves readability and maintainability of the code.

Example

void foo

 (); //Not recommended

void foo(); //Recommended

1.4.2 [OPTIONAL] Eliminate unused parameters to increase efficiency and legibility.
1.5 Initializers
1.5.1
Initialization of Variables and Constants

1.5.1.1 [OPTIONAL] Declare variables initialized to numeric values or strings in a highly visible position; whenever possible collect them in one place.
It would be very hard to maintain a code in which numeric values or strings are spread over a big file. If declaration and initialization of variable to numeric values or strings is put on the most visible position, it will be easy to locate them and maintain.
1.5.1.2 [OPTIONAL] Declare each variable with the smallest possible scope and initialize it at the same time.

It is best to declare variables close to where they are used. Otherwise you may have trouble finding out the type of a particular variable. It is also very important to initialize the variable immediately, so that its value is well defined.
Example

int value = -1; // initial value clearly defined

int maxValue; // initial value undefined

// NOT recommended
1.5.1.3 [OPTIONAL] In the function implementation, do not use numeric values or strings; use symbolic values instead.
1.5.1.4 [OPTIONAL] Do not use the same variable name in outer and inner scope.
Otherwise the code would be very hard to understand and it would certainly be a major error prone condition.

1.5.1.5 [OPTIONAL] Declare each variable in a separate declaration statement.
Declaring multiple variables on the same line is not recommended. The code will be difficult to read and understand.

Some common mistakes are also avoided, for example, when you declare a pointer, a unary pointer is bound only to the variable that follows immediately.

Example

int value = -1; // initial value clearly defined

int maxValue; // initial value undefined

// NOT recommended
Example
int i, *ip, ia[100], (*ifp)(); // Not recommended

// recommended way:

LoadModule* oldLm = 0; // pointer to the old object

LoadModule* newLm = 0; // pointer to the new object
1.5.1.6 [OPTIONAL] Initialize fields that are not const or pointers instead of assignment.
Example

class MyClass{

 public:

 MyClass(int newx, int* p);

 ...

 private:

 int x;

 int *p;

};

MyClass::MyClass(int newx, int* newp):x(newx)//x is

{ //initialized.

 p = newp;

}
1.5.1.7 [MANDATORY] Initialize all static class members.

Static class members can be accessed before the class is instantiated. Hence, always initialize all static class members to prevent reading from un-initialized variables.
1.5.1.8 [OPTIONAL] If you wish to initialize an array, do not declare the array size when the array is initialized.

Allow the magnitude of an array to be set automatically during definition. In this way, changes to the number of elements in the array do not require corresponding changes to the explicit array size, making the code easier to maintain.
Example

 #define SIZE 4

 int tab1[SIZE] = {1,2,3}; //NOT OK
 int tab2[] = {1,2,3}; //OK

1.5.1.9 [MANDATORY] Do not declare the size of the array when the array is passed into a function as a parameter.

Different invocation of the function passes array arguments with different magnitudes. Explicitly specifying the magnitude of array in a function argument definition makes the code difficult to maintain. Therefore, size of the array should not be declared.
Example

void foo2(int x[30]) //Not recommended

{

}

void foo2(int x[]) //recommended

{

}
1.5.1.10 [OPTIONAL] Initialize all pointer variables.

This helps to avoid dereferencing of un-initialized pointer variables.

Example

void foo()

{

int* ptr; //Not recommended

int* ptr = 0; //recommended

}
1.5.1.11 [MANDATORY] Do not initialize a reference to an object whose address can be changed.

The reference to an object in the free store can be deleted through a pointer and consequently can refer to the object whose address can be null.

Example

void foo(){

 int *ptr = 0;

 int &rptr = *ptr; // NOT OK

}

void foo(){

 int ptr = 0;

 int &rptr = ptr; // OK

}
1.5.2 Constructor Initializer Lists

1.5.2.1 [MANDATORY] Initialize all data members in the class constructors.
And if you add a new data member, do not forget to update accordingly all constructors, operators, and the destructors.
1.5.2.1 [MANDATORY] Let the order in the initializer list be the same as the order of declaration in the header file: first base classes, then data members.

It is legal in C++ to list initializers in any order you wish, but you should list them in the same order as they are called.

The order in the initializer list is irrelevant to the execution order of the initializers. Putting initializers for data members and base classes in any order other than their actual initialization order is therefore highly confusing and can lead to errors. A data member could be accessed before it is initialized if the order in the initializer list is incorrect.

Virtual base classes are always initialized first, and then base classes, data members, and finally the constructor body for the most derived class is run.

Example

class Derived : public Base { // Base is number 1

public:

explicit Derived(int i);

Derived();

private:

int jM; // jM is number 2

Base bM; // bM is number 3

};

Derived::Derived(int i) : Base(i), jM(i), bM(i) {

// Recommended order 1 2 3

// Empty

}
1.5.3 Copying of Objects

1.5.3.1 [OPTIONAL] Avoid unnecessary copying of objects that are costly to copy.

Because a class could have other objects as data members or inherit from other classes, many member function calls would be needed to copy the object. To improve performance, you should not copy an object unless it is necessary.

It is possible to avoid copying by using pointers and references to objects, but then you will instead have to worry about the lifetime of objects. You must understand when it is necessary to copy an object and when it is not.
1.5.3.2 [MANDATORY] A function must never return, or in any other way give access to, references or pointers to local variables outside the scope in which they are declared.

Returning a pointer or reference to a local variable is always wrong, because it gives the user a pointer or reference to an object that no longer exists.
1.5.3.3 [MANDATORY] If objects of a class should never be copied, then the copy constructor and the copy assignment operator should be declared private and not implemented.

Ideally the question whether the class has a reasonable copy semantic naturally comes out of the design process. Do not push copy semantics on a class that should not have it.

By declaring the copy constructor and copy assignment operator as private, you can make a class non-copy able. They do not have to be implemented, only declared.
1.5.3.4 [MANDATORY] If objects of a class should be copied, then the copy constructor and the copy assignment operator should be implemented, with the desired behavior.

The compiler generates a copy constructor, a copy assignment operator, and a destructor if these member functions have not been declared. A compiler-generated copy constructor does member-wise initialization and a compiler-generated copy assignment operator does member-wise assignment of data members and base classes. For classes that manage resources (Examples: memory (new), files, sockets), the generated member functions have probably the wrong behavior and must be implemented. You have to decide if the resources pointed to must be copied as well (deep copy), and write the right behavior in the operators. Of course, constructor and destructor must be implemented as well.
1.5.3.5 [MANDATORY] Assignment member functions should work correctly when the left and right operands are the same object.

This requires some care when writing assignment code, as the case when left and right operands are the same may require that most of the code is bypassed.

2. Naming Conventions
2.1 Naming Classes
· All Class names in class declarations should be prefixed by “C”.

· All letters of the class name should be lowercase, except the first character in a name that should be uppercase. It should also be noted that the name of a class should be logical to the context of its functionality as far as possible. This makes the class more understandable.

Example
class CFigure // OK

{

};
2.2 Method Names

For methods of a class, all letters should be lowercase, except the first character in a name that should be uppercase. It should also be noted that the name of a method should be logical to the context of its use as far as possible. This makes the method more readable and easily maintainable.

Example: For a function which read from a communication port, we can name it like -
int ReadFromPort(HANDLE hPort, BYTE* pBuff);
2.3 Method and Local Argument Names

· All the arguments naming should follow some naming convention, for example, Hungarian notation.

· The initial characters indicating the type of the argument must be lowercase.

· All word beginnings after the first letter(s) indicating the type should be uppercase.

Example
int ReadFromFile(char* pszFileName, BYTE* pBuff,
 UINT nNumBytesToRead)
int ReadFromPort(HANDLE hPort, BYTE* pBuff);
2.4 Class Member Variables

· All class member variable names should consist of three parts, namely, scope:type:logical name, written as <scope>_<type><LogicalName>. All the variables should uniformly follow some naming convention. For example, we could follow the Hungarian notation. We could use the scope part as "m_" indicating that the variable is a member of a class. This type of member declarations distinguishes the class members from the local ones.

· The initial characters indicating the type of the argument must be lowercase.

· All word beginnings after the first letter(s) indicating the type should be uppercase.

Example
int m_nIndex; TCHAR* m_pszFileName;
2.5 Pointer Variables

· Pointers should be prefixed with a 'p' and the type of the variable. For example, an integer pointer should be declared as:
int* pnNumber = NULL;

· Place the ‘*’ close to the data type and not to the variable name.
Example
UINT* pMsgNum;
· A void pointer declaration should be prefixed with a ‘v’.

Example

void* g_pvMyVariable;
2.6 Constant Variables

Constant variables should be prepended with a ‘k’.
Example

const unsigned char kucparam;
2.7 Reference Variables

Reference variables should be prepended with a ‘r’.
Example
int& rCount = GetCurrentCount();
int ReadBytes(int& rNumBytes)

2.8 Global Variables

Global variables if any should be prepended with a ‘the’.
Example
unsigned int theWindows;
2.9 Static Variables

Static variables may be prepended with an ‘s’.
Example
static int g_siMark;

2.10 Structure Names

· The structure tags should be prepended with ‘S’.

Example
struct SEmployeee {

// data declarations

};
· When possible, for types based on built-in types, make a typedef.

· Typedefs should preferably be in ALL UPPERCASE except for typedefing classes.

Example
typedef ULONG unsigned long;

typedef MISReader CFileReader;

2.11 Enum Names
Labels should be ALL UPPERCASE with ‘_’ for word separators.

Example
enum Colors { COLOR_RED, COLOR_GREEN, COLOR_BLUE }

2.12 Array Names

· Array variables and parameters should be prepended with an ‘rg’.
Example

int rgiTab[10];

· Dynamically allocated arrays should be prepended with a ‘prg’.
Example

int* prgdyarr1 = new int[10];

2.13 Ifstream Variables

Ifstream type variables and parameters should be prepended with an ‘if’.
Example

ifstream ifFilename;

2.14 Istream Variables

Istream type variables and parameters should be prepended with an ‘is’.
Example
void foo(istream &risIn){}

2.15 Ofstream Variables

· Ofstream type variables and parameters should be prepended with an ‘of’.
Example

Ofstream ofFilename;
2.16 Ostream Variables
· Ostream type variables and parameters should be prepended with an ‘os’.
Example
void foo(ostream &rosOut){}

2.17 Pointer, Array, and Reference Variables

· Int pointer, array, or reference variables and parameters should be prepended with an ‘i’.

Example
int* piMyVariable;

· Short int pointer, array, or reference variables and parameters should be prepended with a ‘psi’.

Example

short* psiMyVariable;

· Long int pointer, array, or reference variables and parameters should be prepended with an ‘li’.

Example
long int* pliMyVariable;

· Word pointer, array, or reference variables and parameters should be prepended with a ‘pw’.

Example
unsigned short* pwMyVariable;

· Dword pointer, array, or reference variables and parameters should be prepended with a ‘dw’.

Example

unsigned long* m_pdwMyVariable;

· Bool pointer, array, or reference variables and parameters should be prepended with a ‘b’.

Example

bool* g_pbMyVariable;

· Byte pointer, array, or reference variables and parameters should be prepended with a ‘by’ or ‘y’.

Example

unsigned char* m_pbyMyVar2;

· Char pointer, array, or reference variables and parameters should be prepended with a ‘c’.

Example

char* pcMyParam;

· Floating point pointer, array, or reference variables and parameters should be prepended with an ‘f’.

Example

float* g_pfMyVar;

· Double precision floating point pointer, array, or reference variables and parameters should be prepended with a ‘d’.

Example

double* g_pdMyVariable;

· Long double precision floating point pointer, array, or reference variables and parameters should be prepended with an ‘ld’.

Example

long double* pldMyParam;

· Null-terminated string pointer, array, or reference variables and parameters should be prepended with an ‘sz’.

Example

char (*g_pszMyVar)[1];

· String pointer, array, or reference variables and parameters should be prepended with an ‘str’.

Example

string* pstrMyVariable;
2.18 Variable Names

Variable names use prefixes (based on a reduced form of ‘Hungarian’ simplified notation) to identify the storage and the type of the variable. Use long names for clarity.
The general format of variable names is:

StoragePrefix + “_” + TypePrefix + VariableName

For example, m_bLogEnabled a Boolean class member

The following prefixes identify the storage occupied by a variable:

· m_

Class member

· g_

Static Class member

· s

Static Variable

· None!
Automatic (local) variable

The following prefixes identify the type of the variable:

· b
boolean types

bEnabled
· n
numerical integer types

byFlags
· h
handle types

hWnd
· Steve: using ‘n’ to cover both unsigned integers and integers is counter to the purpose of using Hungarian in the first place. ‘u’ should be used for unsigned integers and ‘n’ (or ‘i’ for integers)

· p
Pointers, smart pointers and arrays
pValue
· c
objects

cAbort
· s
structures

sValue
· sz
array of char

szCity
· c
signed char variables

cMyVariable
· by/y unsigned char / byte

byMyVariable
· f
float variables

fMyVariable
· d
double precision floating

dMyVariable

point variables

· si
short int

siMyVariable
· li
signed long int

liMyVariable
· ld
long double precision

ldMyVariable

floating point variables

· dw
unsigned long int/ dword

dwMyVariable
· w
unsigned int /word

wMyVariable
· str
string variables

strMyVariable
2.19 Local Variables
· Declare local variables at the point where they are needed.
· Take care of variables declared in a for-statement.
· Use braces in a case label in a switch-statement.
· Do not assign to loop control variables in the body of for-loop.
· Do not use a for-statement without initialization and an increment counter.
It is good practice to declare a local variable only when it is needed. In this way, unnecessary and possibly expensive constructor calls can be avoided.
 void MyClass::SomeFunction (...)

 {

 if (bErrorFlag) {

 return;

 }

 String string; // in this way String is not created

 // when not needed

 ...

 }

It may also make sense to use braces to reduce the scope of an object. This ensures that the object is destructed as early as possible. In the future, compilers may be able to detect this themselves, but currently compilers destruct objects only at the end of a block.

It is possible to declare the loop variable in the for-block. However, in the newly proposed C++ standard, the loop-variable is invisible. The loop-variable has to be declared before the loop to be visible.

Example
for (int i=0; i<n; i++) {

 ...

 }

If the loop-variable is used after the loop, it should be declared before the loop and not in the for-statement itself.
Often compilers cannot directly handle the creation of an object in a case-statement. To be able to do this, braces have to be used.
switch (itsOption) {

 case (anOption):

 { // use braces to be able

 Array<float> array;// to create the array.

 ...

 }

 break;

 default:

 ...

 }

Move the assignment-to-control variable from inside of the for-loop to the increment clause of the loop.
Example
void main(int argc, char* argv[]) {
 for (int i = 0; i < argc; i++) {
 cout << argv[i]);
 i = i + 1; //Not Recommended

}
 }

void main(int argc, char* argv[]) {
 for (int i = 0; i < argc; i=i+2) { //Recommended
 cout << argv[i]);

 }

 }

For-loop control variables should only be modified in the initialization and condition expressions of the loop. If you modify them inside the for-loop, it makes the logic flawed and difficult to understand.

Example
void func() {

 for (int i = 0; i < 100; i++) // Not recommended

 i += 3;

}
· Do not use the enum keyword to declare a variable.
Enum keyword is unnecessary when declaring a variable.

Example

enum Colors {RED,BLUE,GREEN};

enum Colors c; //Not recommended

Colors c; //Recommended
3. Documentation

3.1 Comment Types and Usage

3.1.1 General comments

3.1.1.1 [MANDATORY] Comments are not a substitute for clearly written code.
Comments can give insight or overviews that are not obvious. The comments should describe what is happening, how it is being done, what parameters mean, which globals are used and which are modified, and any restrictions or bugs. However, avoid comments that are clear from the code, as such information can be gleaned from the code and is unnecessary. Comments that disagree with the code are of negative value. Short comments should be ‘what’ comments, such as "compute mean value", rather than ‘how’ comments such as "sum of values divided by n". C is not an assembler; putting a comment at the top of a 3-10 line section telling what it does overall is often more useful than a comment on each line describing micrologic.

Remember that many people will be reading your code over the lifetime of the product. A useful test for a comment is to consider, "if I was on the information highway and was run over by an Information Truck, would this comment be useful for me to continue maintaining my code, even when they cannot ask me any questions?"
3.1.1.2 [MANDATORY] Comments must be indented at the same level as the code block that they describe.
Comments should assist in the understanding of the code. Comments which are not at the same level as the code which they describe inhibit the easy reading of the code and interfere with the visual flow.

3.1.1.3 [MANDATORY] Comments must be provided for each non-trivial variable declaration or any variable which is not self-commenting.
Trivial variables are simple variables in short functions; such variables should be used in a straight-forward manner and be used within a localized scope. Variable names should be selected so as to be "self-commenting" and not require a comment whenever possible. Examples of such variables would be colorIndex, soundToPlay, error, or storyWordCount. Such variables need not be commented.

Variables whose function is not clear from their name, or may be easily confused with other variables, must be commented. Generic or obscure variable names like boxid, index, thing1, thing2, and tryToCatchUp are discouraged and if used must be commented unless their use is so trivial as to be obvious to the most casual observer (that is, a COBOL programmer).

Comments that merely restate the variable name are not useful, and should be left out or replaced.

char *cP;
int32 count;
int32 SocketDescriptorID

//unique ID of socket descriptor
3.1.1.4 [MANDATORY] Comments should be provided for each field or member of a structure and class.
3.1.1.4.1 [MANDATORY] These comments should provide information about usage, not repeat name or type information.
3.1.1.4.2 [MANDATORY] These comments should be aligned horizontally for ease of readability.
Because structures have a larger scope than local variables and are often much less intuitive (due to lack of context), all fields of structures, unions, and classes should have comments that describes the field's usage. Do not merely repeat name or type information in the comment. Often, structures are written to disk or are exposed to XTension developers and other internal modules. Therefore, every effort should be made to comment structures, unions, and classes in as context free way as possible. Since XT developers see many structures as documentation, lining up the comments helps keep it readable and makes our documentation look more professional.

typedef struct {
 uint32 AlarmID; // Alarm’s unique ID. 0 if illegal
 bool8 isCR; // TRUE if Clearance Report is set, else FALSE

} AlarmRec;

3.1.1.4.3 [MANDATORY] If a comment does not fit to the right of a structure element, it should either be wrapped on the following lines as a multi-line comment, or go on a line by itself before the element being commented.
typedef struct {

uint32 AlarmID; // Alarm’s unique ID. 0 if illegal
 bool8 isCR; /* TRUE if Clearance Report Flag is

 ** set, otherwise FALSE

 */

} AlarmRec;

3.1.1.5 [MANDATORY] Comments should be provided for each source and header file.
3.1.1.6 [MANDATORY] Comments should be provided for each function/method.
3.1.1.7 [MANDATORY] "Line-drawing" to enclose comment blocks should use only the asterisk. Do not use minuses or equals.
Version Control tool (source safe) uses lines of equal signs ("=") to separate conflicting changes during integration. Searching for conflicts is made much more difficult when arbitrary comments use lines of equal signs too. To prevent any conflicts with SourceSafe or future tools, use only lines or blocks of asterisks ("*") in comments. Never use equal signs or minus signs ("-"). Other symbols (such as pound signs ("#"), percents ("%"), underscores ("_"), pipes ("|"), and at signs ("@")) are also discouraged.

Discouraged - Format is OK, but shouldn't use boxes:
/**************************\
** Comments
**************************/

3.1.2 Single-line Comments

3.1.2.1 [MANDATORY] Single-line comments can be formed with either C++ ("//") or C ("/* */") comments.
Either comment form is valid. You may want to use the "//" form to prevent non-terminating comments (although this is less likely to occur with current chroma-coding editors).

// This is a one-line comment
/* This is also a valid one-liner */

3.1.2.1.1 [OPTIONAL] The use of C++ style single line comment is recommended.
3.1.2.2 [MANDATORY] Comments for a single line of code should be offset by at least one tab from the end of the code line.
This helps a reader follow the logic of the code by picking out comments without having to search the code for the comments. This is not saying that if only one line of code is commented, then the comment must be at the end of the line of code. The single line comment can go on the previous line, if desired. The intent is to specify the style of comments that you want to put with one line of code.

for (i = 1; i <= MAXARRAYSIZE; ++i) { // array is base 1
 array[i] = FIX(array[i]); // convert to fixed
}

for (i = 1; i <= MAXARRAYSIZE; ++i) { /* array is base 1 */
 array[i] = FIX(array[i]); /* convert to fixed */
}

for (i = 1; i <= MAXARRAYSIZE; ++i) { /* array is base 1 */
 array[i] = FIX(array[i]); /* convert to fixed */
}

for (i = 1; i <= MAXARRAYSIZE; ++i) { /* array is base 1 */
 /* convert to fixed */
 array[i] = FIX(array[i]);
}
3.1.2.3 [OPTIONAL] Comments for actual parameters may be in-line.
The only exception to the rule of having no comments in the code is for the purpose of commenting actual function parameters. Note that this is for actual, not formal parameters. Many times a function may take a series of NULL pointers, or Booleans, and the function call doesn't give any indication of what was intended by the caller. In this case, it is acceptable to annotate the parameters with their formal argument names.

ServerGetInfo(NULL /*serverName*/, NULL /*networkName*/, userName, NULL /*password*/, FALSE /*useCache*/);
Acceptable, but hard to follow:
ServerGetInfo(NULL, NULL, userName, NULL, FALSE);

3.1.2.3.1 [OPTIONAL] The use of const or enum values for NULL parameters in lieu of comments is strongly encouraged.
ServerGetInfo(kNoServer, kNoNetworkName, kNoUserName, kNoPassword, kUseCache);

3.1.3 Multi-line Comments

3.1.3.1 [MANDATORY] Multi-line comments should be formatted with C comments ("/* */") or C++ comments ("//")

3.1.3.1.1 C Style multi-line comment format:
· The first line of the comment is on the same line as the comment open ("/*") and separated by a space (" ").
· Following comment lines start with two asterisks ("**") and a space (" ").
· The final line consists only of the close comment ("*/").

/* This comment is properly formatted
** for a multi-line comment
*/

3.1.3.1.2 C++ Style multi-line comment format:
· The first line of the comment is on the same line as the comment open ("//") and separated by a space (" ").
· Following comment lines start with two asterisks ("//”) and a space (" ").
// This comment is properly formatted
// for a multi-line comment.

3.1.3.1.3 [OPTIONAL] The use of C style multi-line comments is recommended.
3.1.3.1.4 [OPTIONAL] Comments in "boxes" are discouraged unless they are file or function comments.
This just makes it easier to visually identify the functions in the file. To "meta-comment" a section of code, use a one line multi-line comment.

/* At this time, we are done with all the messy details of file name,
** type, space on disk, etc. and are at last ready to write the file.
*/
// Remember the doc ref num for the filters
...

3.2 File Level Documentation

All files should start with a file comment in the style:

	/*

 * File.H

 *

 * Overview of what is in this file, why it exists and how it fits

 * into "The Big Picture".

 *

 * Author: Your Name <sircar@wipinfo.co.in>

 * (Insert other authors here)

 * (Note: The top author should be the current maintainer of the file.

 *

 * Date: <Date of Origination>

 * Revision History: <Date of major revisions>

 */

· Start with a high level summary of what a function or method is supposed to do. Fill in some high level details of how it does that as comments in the body. Drill down each of those details iteratively.

· Do not use separators (a long line of dashes, stars, or the like) in comments. They are difficult to create or maintain, and they provide little, if any, additional readability.

· Comment the end of class and function definitions, and the end of long loop or conditional statements. This allows someone reading the code to immediately know what a closing curly brace ('}') belongs to.

3.3 Class Level Documentation

All C++ class definitions should provide comment blocks similar to the following:

//---

// @CLASS Description of class …. which may run onto as

// many lines as you require

//

// @BASE public | MMyBaseClass

//

// @XREF <c MMyOtherClass>

//---

class MMyClass : public MMyBaseClass

{

// @ACCESS Public Attributes

public:

// @CMEMBER Description of attribute …

int iPublicAttr;

// @ACCESS Protected Attributes

public:

// @CMEMBER Description of attribute …

int iProtectedAttr;

// @ACCESS Private Attributes

public:

// @CMEMBER Description of attribute …

int iPrivateAttr;

// @ACCESS Public Attributes

public:

// @CMEMBER Description of attribute …

int iPublicAttr;

// @ACCESS Construction / Destruction

public:

 // @CMEMBER Constructor for MMyClass objects

 MMyClass();

 // @CMEMBER Destructor for MMyClass objects

 virtual ~MMyClass();

// @ACCESS Public Operations

public:

 // @CMEMBER Description of method …

 HRESULT MyMethod(int iParam1, float fParam2);

// @ACCESS Overrides for IMotMyInterface

 protected:

// @CMEMBER Implementation of <om IMotMyInterface.AMethod>

 virtual HRESULT OnMotMyInterfaceAMethod();

// @CMEMBER Implementation of <om IMotMyInterface.AnotherMethod>

 virtual HRESULT OnMotMyInterfaceAnotherMethod();

// @ACCESS Public Operations

 public:

// @ACCESS ClassWizard generated virtual function overrides

// @CMEMBER Called when last OLE reference to/from object is released.

//{{AFX_VIRTUAL(MMyClass)

public:

virtual void OnFinalRelease();

//}}AFX_VIRTUAL

// Implementation

 protected:

 // Generated message map functions

 //{{AFX_MSG(MMyClass)

 //}}AFX_MSG

 // MFC macros

 public:

 DECLARE_DYNCREATE(MMyClass)

 DECLARE_OLECREATE(MMyClass)

 DECLARE_MESSAGE_MAP()

 DECLARE_DISPATCH_MAP()

 DECLARE_INTERFACE_MAP()

// @DEFINT IMotMyInterface

BEGIN_INTERFACE_PART(MotMyInterface, IMotMyInterface)

STDMETHOD(AMethod)();

STDMETHOD(AnotherMethod)();

END_INTERFACE_PART(MotAnInterface)

}
3.4 Method Level Documentation

3.4.1 [MANDATORY] Every function/method in a file should have a function comment having the following form:

/**

 *A normal member taking 2 args and returning an int.

 *A detailed description of the function.

 *@param a an integer argument.

 *@param s a constant character pointer.

 *@see Test()

 *@see ~Test()

 *@see testMeToo()

 *@see publicVar()

 *@return The test results

*/

int testMe(int a, const char *s);

The following is a description of the comment block above:
· The comment block is initiated by the /** (forward slash and two stars) symbol.

· The first line of comment beginning with a *, gives a brief description of the function and is ended with a full stop.

· The second line is used to give a more detailed description of the function and is also ended with a full stop.

· The third line of comment uses the @param keyword that creates a parameter section in the documentation for this function and describes the specified parameter with the text that follows.

· The @see keyword creates a “see also” section that creates a link in the documentation to other items that may be connected to the current function.

· The @return keyword creates a section in the documentation detailing return values.

· The comment block is ended by the */ (star forward slash) symbol.

3.4.1.1 Function Header Section Tags

Function Name - required

Exact name of the function. Optionally include the fully qualified name.

/**
 *
 * Shape::Draw
 */

Description - required

Description of what the function does. This should not be a description of how the function does something, but a description of what and/or why the function does.

/* GetServerName
*
* Retrieves the name from the server the user is currently logged* on to. This is the name the user should see in any User
* interface.
*/
Class Modifiers - optional

List any modifiers applied to the class, that is, static, virtual, pure virtual and so on. Be as explicit as possible.

/**
 *
 * Shape::Draw
 *
 * Draw the shape.
 *
 * Class Modifiers:
 * virtual
 */
List of parameters - required if any arguments

Describes the argument and value of each argument into or out of the function. Each entry under this section needs to contain:

· A tab

· @param

· A tab

· The name of the argument

· Input arrow ("-->" - minus minus greater-than), if the argument's value is significant when the function is called

· Output arrow ("<--" less-than minus minus), if the argument's value is significant when the function exits. Note that if the value is unchanged from when the function is called, it is not considered significant and need not be specifically listed as an output value.

· A description of the argument and its value. If a function has different values on input and output, use the "<->" (less-than minus greater-than), and combine the input/output descriptions.

· If the argument contains flags, or an enumeration constant, you must include a possible input value as an example. It can be very difficult to figure out what set of flags or constants are valid, especially if the flag is not used in the function, but is just passed into another function. With an example another programmer can figure out what valid parameters are by using the browser on the example and finding where the macros, constants, or enumerations are defined. Once the programmer has found the declarations for valid parameters, they should be able to determine from the comments there what will happen if they pass each value in. Also note the next bullet. If the entire set of values is not listed, you should include "etc." to indicate that other values are also legal.

· If the argument takes a small set of values and the behavior of the function is not obvious, a list of values and the behavior they produce should be included.

Complete list if convenient:
 * DrawLine
 *
 * @param lineType --> Type of line to draw (kLineType_Solid,
 * kLineType_Dotted, kLineType_Dashed, kLineType_None).

At least one example with "etc.":
 * DrawLine
 *
 * @param lineType --> Type of line to draw (kLineType_None, etc.).

If the argument takes a small set of values and the behavior of the function is not obvious, a list of values and the behavior they produce should be included.

 * DrawLine
 *
 * @param useBlack --> TRUE - should draw the character in black
 * FALSE - draw character in the default
 * color as found in gCharDefColor

@return - required if doesn't return void
Specifies the meaning of the return value. If a handle or pointer is returned, it should be documented whether the caller is expected to dispose of it or not.

Globals - required if globals used

Specifies any global variables used and/or changed by the function/method. This section should have the same format as the Arguments section.

Side Effects - required if there are side effects

Specifies any side effects of the function/method. This may include whether memory moved, something was drawn on the screen, system state has changed (that is,. window closed), and so on.

Notes - optional

Useful information about the function/method. This may include where to go for more documentation, documentation of non-obvious uses of the function, comments on future or desired behavior that is not implemented yet, ideas for optimization, and so on.
Algorithm - required if algorithm is not obvious

Specifies the algorithm used by the function/method for whatever it is that it does. For instance, a sorting function may indicate what sorting method is used.

Warning - optional

Provides a warning about the use/behavior of the function/method. This may include warning to lock memory, non-obvious but dangerous ramifications of the side effects, and so on.

Others - optional

You may include other sections if you find them necessary. However, you should try to use one of the listed ones if possible, just for consistency.

3.4.2 [MANDATORY] Indenting of description sections under headings is required.
3.4.3 [MANDATORY] Do not put blank lines between the function header and declaration.
3.4.4 [MANDATORY] In the function header section that described parameters (list of @param lines) or "Returns" section, if a handle or pointer is returned, it should be documented whether the caller is expected to dispose it or not.
3.5 Attribute Level Documentation

Recommendations are:

· The entire name should be lowercase.

· Multiple word variable names should be separated by an underscore ('_'). General variables should be all lowercase.

· In the event that a member function and variable name collide (that is,. size), append an underscore ('_') to the end of the variable name.

· Do not use single character variable names like i, j, or k, unless that name is the commonly accepted mathematical notation for a concept such as the unit vector in the x direction. Loop control variables can always use more descriptive names, such as index, matrix_number, or file_number. Failure to be able to provide a more meaningful variable name denotes a failure to understand what you're really looping through. Further, single character variable names can easily be mistaken for numbers in many fonts (like my favourite Fortran statement: FOR i=i to end).

· Use a more descriptive name for template types than T, like Stored_Type, Data, or Key. While Stroustrup may only use T, his style is not expressive of any experience he may had in working on or maintaining a large code.

· Declare variables where they are first used. C++ lifted this restriction from C for a reason. When someone looks at a piece of code (like when an assertion fires in a part they didn't write), it should be immediately apparent what the type of the variables in the surrounding statements is.

4. Formatting Conventions
4.1 Expression Formatting
4.1.1 Spacing

Spacing should be used to enhance readability and consistency. All the spacing rules here are recommendation. These are the suggestions if followed would lead to good readable and maintainable code. To make an expression readable, these rules should be followed in entirety, unless the engineer feels that specific expression can be made more readable and easier to understand with different spacing.

4.1.1.1 [OPTIONAL] Always put space after ‘,’.
4.1.1.2 [OPTIONAL] Always put space between binary, arithmetic, logical, and bitwise operators and operands.
4.1.1.3 [OPTIONAL] Use the following table for spacing recommendation.
	Operator Type
	Examples
	Spacing

	Unary Arithmetic
	+ - ++ --
	No space between operator and operand

	Unary Logical
	!
	No space between operator and operand

	Unary Bitwise
	~
	No Space between operator and operand

	Unary Dereference
	* &
	No Space between operator and operand

	Reference Declaration
	* &
	No Space between operator and operand

	Binary Arithmetic
	+ - % / *
	Spaces required on both sides

	Binary Logical
	&& ||
	Spaces required on both sides

	Binary Bitwise
	^ | & >> <<
	Spaces required on both sides

	Binary Dereferences
	. ->
	No spaces on either sides

	Bit-field Declaration
	:
	Spaces required on both sides

	Scope Resolution
	::
	No spaces on either sides

	Assignment
	= += /= -= *=
	Spaces required on both sides

	Comparison
	== != < > <= >=
	Spaces required on both sides

	Parenthesis
	()
	No spacing between operator and enclosed expression

	Array References
	[]
	No spacing between operator and enclosed expression.

No space to left of [

	List Element Separator
	,
	No space on left. Space required on right

Continued
	Operator Type
	Examples
	Spacing

	Statement Separator
	,
	No space on left. Space required on right

	Statement Terminator
	;
	No space on left. Newline required on (unless in for)

	Typecast
	(Type)
	No space between parenthesis and type. No space between cast and expression.

4.1.2 Parenthesis
4.1.2.1 [OPTIONAL] The use of parenthesis is to make the evaluation order of complex expressions clearer and encouraged (even if the parenthesis is redundant for the normal order of operations).
There is no harm in using redundant parenthesis and their use helps avoid problems from incorrectly figuring the order of operations for a given expression.

Example

if ((c >= 'A' && c <= 'Z') || (c >= 'a' && c <= 'z') || (c >= '0'

&& c <= '9')) {

return TRUE;
}

4.1.2.2 [OPTIONAL] Always place left parenthesis directly after the function name.

This improves the readability and maintainability of the code.

Example
void foo () //NOT OK

{

}

void foo() //OK

{

}

4.1.2.3 [OPTIONAL] Always place a maximum of one ASCII space character following the opening parenthesis in conditional statements.

This improves the readability and maintainability of the code.

Example

if(x==y) //OK

{

}

if(x==y) //NOT OK

{

}

4.1.2.4 [OPTIONAL] Always use a single ASCII space between conditional keyword and its opening parenthesis.
This promotes readability by providing a clear indication that a statement is a conditional statement versus a function, and by providing a clear break between the conditional keyword and its associated expression.

Example

if(x==y) //NOT OK

{

}

if (x==y) //OK

{

}

4.1.2.5 [OPTIONAL] Always use parenthesis with the “return” and “sizeof” statements.

This improves readability of the code.

void foo()

{

 return true; //NOT OK

}

void foo()

{

 return(true); //OK

}
4.1.3 Line Breaking

Lines should be restricted to 80 printable characters in length. If a line exceeds 80 characters, it should be broken into two or more lines. Even though GUI development environments can generally display lines of arbitrary length, printers and some tools are still more restricted.

4.1.3.1 [MANDATORY] Line breaking must be consistent on a file level.
4.1.3.2 [OPTIONAL] Lines in excess of 80 characters should be broken according to the following guidelines:
· Continuation lines should be indented two tabs from the current block level. This helps to show that the line is part of the previous line, but is not confused with a following code block that is indented one tab. So if an expression is broken three times onto 4 separate lines, the last 3 lines should all be indented two tabs from the first line.

· Continuation lines should start with an operator. This makes it clearer that the line is a continuation of previous line. (Lines broken in a function call and which would start with a comma are exempted.)

· Conceptual units should be kept together. Break the line at a position which keeps sub-expressions together, not just at the token closest to the right edge of the 80 character length.

Example

if (pobject->iValue != pglobalobject->iValue

&& pobject->iflag != pglobalobject->iflag

&& pobject->idummy != pglobalobject->idummy) {

m_iSelectAll = TRUE;

pobject->iValue = pglobalobject->iValue;
}

Node* pnode = AddTD(pMTranslationDefinition, pListView,

bIsImport, pDlg);

pnode->execute();
4.1.4 Operators

4.1.4.1 Unary Arithmetic Operators + - ++ --

4.1.4.1.1 [OPTIONAL] Unary arithmetic operator is never separated from its operand.
Example

iCount = (itemNum++) * iglobalCount;

4.1.4.2 Unary Logical Operator !

4.1.4.2.1 [OPTIONAL] Unary logical operator is never separated from its operand.
Example

if (!(pdlg->IsKindOf (RUNTIME_CLASS(MAddModifyDlg)))) {
 // error state;

}
4.1.4.3 Unary Bit Operator ~

4.1.4.3.1 [OPTIONAL] Unary bit operator is never separated from its operand.
Example

unsigned char c = 127;
// binary 0111111

unsigned char flipped = ~c; // binary 1000 0000
4.1.4.4 Unary Dereference Operators * &

4.1.4.4.1 [OPTIONAL] Unary dereference operator is never separated from its operand.
Example

pView->UpdateMapNode (pTD->GetRuleName(),*pTD);

pView->GetMapNode(iCount, &refNode);
4.1.4.5 Reference Declaration Operators * &

4.1.4.5.1 [OPTIONAL] Reference declaration operator is never separated from its type.

Example

GetMapNode(int iCount, Node& refNode);

Char* szString;
4.1.4.6 Binary Arithmetic Operators + - * / %

4.1.4.6.1 [OPTIONAL] Binary arithmetic operator is always separated from its operand.

Example

iIndex = iCurrentIndex + iElementSize + sizeof(element);
4.1.4.7 Binary Logical Operators || &&

4.1.4.7.1 [OPTIONAL] Binary logical operator is always separated from its operand.
Example

if (m_szTDName == refTD.GetRuleName()

&& m_iRelayorSensor == refTD. GetRelayorSensor()

&& m_szSeverity == refTD. GetSeverity()) {

// implement functionality

}
4.1.4.8 Binary Bit Operators << >> | ^ &

4.1.4.8.1 [OPTIONAL] Binary bit operator is always separated from its operand.
Example

flags = flags | 0x8000;
4.1.4.9 Binary Dereference Operators . ->

4.1.4.9.1 [OPTIONAL] Binary dereference operator is never separated from its operand.
Example

if (m_szTDName == refTD.GetRuleName()

&& m_iRelayorSensor == (&refTD). GetRelayorSensor()

&& m_szSeverity == refTD. GetSeverity()) {

// implement functionality

}
4.1.4.10 Bitfield Declaration Operator :

4.1.4.10.1 [OPTIONAL] Spaces are required on both sides.
Example

struct {
 int hasAttachment : 1;
 int attachmentType : 2; //
 int unused : 13;
} flags;
4.1.4.11 Scope Resolution Operator ::

4.1.4.11.1 [OPTIONAL] Never separated from the scope or the identifier.
Example

CString& MTdListView::GetTdName() {

// code

}
4.1.4.12 Assignment Operators = += -= *= /=

4.1.4.12.1 [OPTIONAL] Always separated from its operands by a space.
Example

iIndex = iCurrentIndex + iElementSize + sizeof(element);

4.1.4.13 Comparison Operators == != > < >= <=

4.1.4.13.1 [OPTIONAL] Always separated from its operands by a space.
Example

if (m_szTDName == refTD.GetRuleName()

&& m_iRelayorSensor == (&refTD). GetRelayorSensor()

&& m_szSeverity == refTD. GetSeverity()) {

// implement functionality

}

4.1.4.14 Conditional (Ternary) Operator ?:

4.1.4.14.1 [OPTIONAL] Always separated from its operands by a space. Non trivial sub-expressions should be closed in parentheses.
Example

int y = 7;

int x = 0;

x = ((y > 5) ? 1 : 0); /*Since y is greater than 5, x is assigned a value of 1 */
4.1.4.15 Parentheses ()

4.1.4.15.1 [OPTIONAL] Never separated from its enclosed expression.

Example

If (m_iValue == MINVALUE) {

// code

}
4.1.4.16 Array Subscript Operator []

4.1.4.16.1 [OPTIONAL] Never separated from its enclosed expression.

Example

int iarrayvalue = array[index];
4.1.4.17 List Element Separator ,

4.1.4.17.1 [OPTIONAL] Never separated from its left side.
4.1.4.17.2 [OPTIONAL] Space always follows the “,”.
Example

RawDataToPrinter(buffer, printData, szPrintBuffer->GetLength());
4.1.4.18 Statement Terminator ;

4.1.4.18.1 [OPTIONAL] Never separated from its left side.

4.1.4.18.2 [OPTIONAL] Always followed by newline unless it is in a for loop.

4.1.4.18.3 [OPTIONAL] In a for loop, the terminator may be followed by a space or a newline, whichever is appropriate for the length of for condition.

4.1.4.18.4 [OPTIONAL] If one terminator in a for loop is followed by a newline, then all should be followed by newline

Example

int iarrayvalue = array[index];

for (i = 0; i < MAXVALUE; ++i) {

// code

}
4.2 Indentation/Tabs/Space Policy

· Indent using 3, 4, or 8 spaces for each level.

· Do not use tabs, use spaces. Most editors can substitute spaces for tabs.

· Tabs should be fixed at 8 spaces. Do not set tabs to a different spacing, uses spaces instead.

· Indent as much as needed, but no more. There are no arbitrary rules as to the maximum indenting level. If the indenting level is more than 4 or 5 levels, you may think about factoring out code.
· If the function is intended too deeply, then it is better to re-organize the code structure.

4.2.1 Justification

· Tabs are not used because 8 space indentation severely limits the number of indentation levels one can have. The argument that if this is a problem you have, too many indentation levels has some force, but real code can often be three or more levels deep. Changing a tab to be less than 8 spaces is a problem because that setting is usually local. When you print the source, tabs will be 8 characters, and the code will look horrible. Same applies for people using other editors, that is why we use spaces.

· When people using different tab settings, the code is impossible to read or print, which is why spaces are preferable to tabs.

· Nobody can ever agree on the correct number of spaces; just be consistent. In general, people have found 3 or 4 spaces per indentation level workable.

· As much as people would like to limit the maximum indentation levels, it never seems to work in general. We trust that programmers choose wisely how deep to nest code.

4.3 White spaces
· Conventional operators should be surrounded by a space character.

· C++ reserved words should be followed by a white space.

· Commas should be followed by a white space.

· Colons should be surrounded by white space.

· Semicolons in for-statements should be followed by a space character.
· There should be no white spaces between the “return” or “sizeof” statements and its opening parenthesis and surrounding “return” or “sizeof” statements argument or expression.

a = (b + c) * d;
 // NOT: a=(b+c)*d
while (true) {
 // NOT: while(true) ...
doSomething (a, b, c, d); // NOT: doSomething (a,b,c,d);
case 100 :
 // NOT: case 100:
for (i = 0; i < 10; i++) {
 // NOT: for (i=0;i<10;i++)
void foo1() { sizeofint(int); } //NOT void foo1() { sizeofint (int);}
4.4 Blank lines
· Logical units within a block should be separated by one blank line.
Enhance readability by introducing white space between logical units of a block.
· Methods should be separated by three blank lines.
When the space between methods is larger than space within the method, the methods stands out within the file.
4.5 Statements
· Lines should not exceed 78 characters.

· Even though with big monitors, we stretch windows wide; our printers can only print so wide. And we still need to print code.

· The wider the window, the fewer windows we can have on a screen. More windows are better than wider windows.
4.6 Continuation
· Use a single space to separate all operators from their operands. The exceptions to this rule are the “->”, “.”, “()”, and “[]” operators. Leave no space between these operators and their operands.
· When breaking operations across lines, put the operator at the end of the broken line rather than at the start of the continuation line.

· Use 4 spaces for each level of indentation.

· Avoid making lines longer than 80 characters. When breaking lines, use the natural logical breaks to determine where the newline goes.

· Indent the continuation line to illustrate its logical relationship to the rest of the code in the line. For functions, for example, this means aligning arguments with the opening parenthesis of the argument list.

Example

newShape = AffineTransform(coords, translation,

 rotation);

if (((newShape.x > leftBorder) &&

 (newShape.x < rightBorder)) &&

 ((newShape.y > bottomBorder) &&

 (newShape.y < topBorder)))

{

 draw(newShape);

}

4.7 Blocks

Use a pure-block, fully bracketed style for blocks of code. This means put brackets around all conditional code blocks, even one-line blocks, and put the opening bracket at the end of the line with the opening statement. The exception to this rule is for conditions that are broken across multiple lines. In this case, put the open bracket on a line aligned with the start of the opening statement (as shown in this example).
Example

if (value < max)

{

if (value != 0)

{

func(value);

}

}

else

{

error("The value is too big.");

}

Although the brackets may seem tedious for one-line blocks, they greatly reduce the probability of errors being introduced when the block is expanded later in the code’s life.
Example

 Void Func()

 {

 if (something bad)

 {

 if (another thing bad)

 {

 while (more input)

 {

 }

 }

 }

 }

4.8 Macros

· Limit the length of a macro to 10 lines to improve readability.

· Limit the number of parameters used in a macro to 5 per macro.

5. Preprocessor
5.1 General
5.1.1 [MANDATORY] The preprocessor directive is separated from any arguments by a space.
This means that there should be one space between #define and MINVALUE.
Example

#define MINVALUE
5
5.1.2 [MANDATORY] Within the code, ‘#’ of all preprocessor directives should be aligned in the left most column.

The Preprocessor directives should not flow with the rest of the code. Since preprocessor directives may change the behavior of the code drastically and unexpectedly, it is better that they draw the attention of the reader, rather than blend with the code.
5.1.3 [OPTIONAL] Use <iostream> functions instead of <stdio.h> functions.

Use iostream to increase type safety, reduce errors and improve performance. Using iostream improves extensibility and provides for subclassability.

The C++ <iostream.h> mechanism is built from real classes such as ostream and istream. Unlike <stdio.h>'s FILE*, these are real classes and hence subclassable. This means you can have other user-defined things that look and act like streams, yet that do whatever strange and wonderful things you want. You automatically get to use the zillions of lines of I/O code written by users you don't even know, and they don't need to know about your "extended stream" class.
5.1.4 [OPTIONAL] Do not add relative path names in #include statements.
5.2 # define

5.2.1 [OPTIONAL] The use of “#define” preprocessor is highly discouraged. Use const, enum, or inline functions where appropriate. Only use “#define” preprocessor directive if there is no other alternative.

5.2.2 [MANDATORY] “#define” preprocessor directives must be formatted as follows: #define Symbol Value.
· The “#” is aligned to the left.

· There is no space between the “#” and “define”.

· The “#define” keyword is separated from the symbol to be defined by a space.
· The definition for the symbol is separated from the symbol by one or more tabs.
· These definitions should be lined up within a block of related definitions.
5.2.3 [OPTIONAL] Replace Macros with inline functions. However, inline functions should never be used for functions with more than few lines.

5.3 #if / #elif / #else / #endif
5.3.1 [MANDATORY] #if et al. statements should be formatted as follows:

#if Condition1
...
#elif Condition2 // if Condition1
...
#else // if Condition1 elif Condition2
...
#endif // if Condition1 elif Condition2 else

· All "#" are aligned to the left, unless it is in a block of preprocessor directives as mentioned above.

· There is no space between the “#" and the "if", "ifdef", "ifndef", "elif", "else", or "endif".

· The preprocessor keyword is separated from any expression clause by one space.

5.3.2 Commenting #if et al. statements

5.3.2.1 [OPTIONAL] Comments can be either C ("/* */") or C++ ("//") comments.

C++ comments ("//") are recommended to prevent accidental non-terminating comments.

5.3.2.2 [MANDATORY] Comments are separated from their #if element by one tab or space.
5.3.2.3 [MANDATORY] Comments include all the related #if conditions without the "#"characters.
Some editors (notably the Visual C editor) sometimes have problems parsing multiple "#"s in one line, so do not use them.

5.3.2.4 [MANDATORY] Comments for #elif, #else and #endif statements should describe what was just finished.
· The programmer does not have to negate the sense of any previous tests. It is sufficient to copy and paste the tests from previous elements. This reduces error, especially as the tests get more complex.

· Using this method, the programmer may copy the previous comment and append a new clause.

· The form is not ambiguous as long as the "if...elif...else" is included. By itself it is not clear whether the comment "#else // MACOS" means that the else clause handles the MACOS case, or it handles the else part of a "#if MACOS". By adding the "if", it becomes clear that this is the #else part that corresponds with a "#if MACOS".

· If the comment refers to the history of the #if structure, then it is clear that the comment for #endif summarizes the entire structure. Otherwise it is not clear what should be put after #endif.

· By highlighting and searching for the #if clause (minus the "#"), it is possible to quickly locate the remainder of the structure.

5.3.2.5 [MANDATORY] If one element of the #if structure is commented, all elements are to be commented.
This is to be consistent, and so that searching on the first #if condition always either finds all the elements of the structure, or never finds any. This is preferred over finding some of the elements, but believing all have been found.

5.3.2.6 [MANDATORY] Comments are required whenever the enclosed code exceeds about 10 lines.
Large #if blocks and #elif ladders can get very confusing. It can also be annoying or difficult to find the limits of a large #if block while scrolling around. Therefore, comments are required whenever the enclosed code is more than about 10 lines in length. That is, when the parts of the #if structure are all within 10 lines of each other, no comments are necessary.

5.3.2.7 [MANDATORY] Comments are required on all but innermost block of nested #if structures.
Since determining which #endif or #else goes with which #if is prone to error, outer levels of nested #if structures are commented. You may also comment the innermost structure, but it is not required (unless the innermost structure spans more than 10 lines as mentioned above).

5.3.2.8 [OPTIONAL] Comments are not required in the simple cases.
5.3.3 [MANDATORY] If an entire function is being enclosed in an #if...#endif block, include function header comment inside the #if...#endif block.
Functions that are entirely within a #if clause need to have the #if before the function comment and the #endif following the final brace. If the #if clause is between the comment and the function declaration, then you cannot see the function comment without scrolling.
5.3.4 [MANDATORY] Only one function may be enclosed in each #if.
If a group of functions are enclosed in a #if, it can be difficult to determine that a function in the middle of the group is indeed inside the #if.

6. Syntax Style
6.1 Memory Allocation-New/Delete

6.1.1 [OPTIONAL] Never use malloc and free.
6.1.2 [MANDATORY] Set a pointer to 0 after deleting an object.
6.1.3 [MANDATORY] Use [] when deleting an array of objects.
6.1.4 [MANDATORY] A class allocating an object should also destruct it.
6.1.5 [MANDATORY] The pointers holding the address of an array should not be incremented. This leads to memory not being freed properly. The elements of the array can be accessed using an index variable.
The operators new and delete should be used to allocate and de-allocate storage. The functions malloc and free are type-unsafe. What is more important, they do not call constructors and destructors. Also avoid using functions doing an implicit malloc (for example, strdup).

A pointer should be set to 0 when an object is deleted through that pointer. In this way, it is avoided that the pointer is dangling. Using the pointer again immediately results in a segmentation violation instead of undefined behavior. Furthermore, the object will not be deleted twice when the delete operator is used again on that pointer.
When deleting in the destructor, setting to 0 is not necessary, because the pointer disappears.

To call the destructor on all objects in an array, the array must be deleted with [].

String* ptr = new String[100];

 delete [] ptr;

 ptr = 0;

When a class allocates storage, it should also de-allocate it. In general, it leads to surprising behavior when the user of a class has to take care of deleting storage which he did not allocate.
6.2 Handling

Exceptions should be used as a ‘last resort’ mechanism for handling unexpected error conditions.

Planned error conditions such as opening a file that does not exist should preferably be handled using return codes.

Otherwise standard C++ exception handling should be used in all cases
Example
#include <iostream>

using namespace std;

class CMyException {

public:

 enum ErrCode {eFailForSomeReason, eFailForAnotherReason};

 ErrCode m_eError;

};

class CTestException {

public:

 void ThrowAnException() throw (CMyException*) {

 CMyException *pEx = new CMyException();

 pEx->m_eError = CMyException::eFailForSomeReason;

 throw pEx;

 }

 void TryToCatchAnException() {

 try {

 ThrowAnException();

 } catch (CMyException *pEx) {

 cout << "Error code = "<< pEx->m_eError << endl;

 delete pEx;

 }

 }

};
1. Destructors, de-allocation and swap should not throw exceptions: There is a reason behind this, since if Destructor throws an exception and if it had been called due to some other exception, then terminate() method is called that abruptly closes the applications. This abrupt closure does not even unwind the stack, that is, even the local objects do not get destroyed. For exceptions, simply wrap everything sensitive that your destructor, de-allocation and swap do in a try/catch block. This prevents propagation of the exception outside the destructor and delete operator.
2. The catch should always use references: The reason behind this is that if by-Value is used, then two temporary variables are created that is a big overhead. By-Value is always discouraged as a mode of passing arguments. Passing by pointers has a problem of allocation and de-allocation of memory, and hence it is always discouraged in exception handling. With References only one temporary variable is created, and there is no problem of memory allocation and de-allocation. Hence, reference should always be used in the catch clause.

3. Accessors / Getters methods should never throw any exception and should always be nothrow.
4. The methods should specify explicitly the exceptions that are thrown by that method. If a method is not throwing any exception, then method should explicitly use ‘nothrow’ that means that the method does not throws any exception.

6.3 Namespaces

1. Put all your code in a namespace. This helps prevent collisions with our own code and with 3rd-party libraries. It also gives us the flexibility to re-use simple, logical names in different contexts.

2. Each module should be in a separate sub-namespace. To reduce qualification across modules, names can be imported into the project namespace with ‘using’ declarations. When names live in separate namespaces, ambiguity can always be resolved with explicit qualification. When they do not, you have violated the language's one-definition-rule.

3. Prefer explicit qualification when referencing a name in another namespace (particularly std::). Explicit qualification clearly indicates what you are referring to.

4. Avoid using-directives (for example, using namespace std;). A using-directive brings all of the names from a namespace into another namespace (or the global namespace). This can easily cause unexpected effects and ambiguities, especially when the organization of header files changes. Finally, template name lookup doesn't proceed through using-directives the way you might expect it to. Just say no.

5. Avoid the standard 'C' headers. The standard 'C' headers - (for example, <stdio.h>) put names into the global namespace. In fact on some implementations, they add a using-directive which imports all names from std into the global namespace. Every standard 'C' header has a C++ counterpart which puts its names into namespace std. Simply remove the '.h' suffix and add a 'c' prefix. So <stdio.h> becomes <cstdio> and <stdlib.h> becomes <cstdlib>. Of course, since assert() is a macro, when you #include <cassert>, it still doesn't take any std:: qualification.

6. Use the unnamed namespace to define names local to a translation unit. Sometimes it is useful to define names (especially type names) in a source file, with the expectation that they won't collide with definitions in other source files. An unnamed namespace may be opened within any other namespace (including the global one).

Example

	namespace {

 struct my_predicate

 {

 bool operator()(char) const;

 };

}

std::pair<std::string,value*> mapping;

std::copy(s.data(),

 std::find_if(s.data(), s.data() + s.size(), compare_char()),

 buffer);

 6.4 Templates

1. Template class declarations follow the same style as normal class declarations. This applies in particular to inline declarations (see above).

2. The keyword template, followed by the list of template parameters, appears on a separate line.

Example

	template< typename T>

class MyClass: public T

{

 :

};

 6.5 New-style casts
6.5.1 [OPTIONAL] Use C++ casts instead of C casts.
C-style casts have long been a source of controversy as well as bugs. Since they represent a work-around to normal language behavior, they should be used sparingly and should be easy to spot in code. To this end, the C++ standard committee invented new-style casts, which come in four flavors: static_cast, dynamic_cast, reinterpret_cast, and const_cast.

static_cast is for converting between related types, such as numeric types, as in:

	double x;

// truncate x

int i = static_cast<int>(x);

static_cast also can be used to downcast from a pointer to base to a pointer to a derived object, as in:
	X* px = new Y; // Y derives from X, as in 3 above

Y* py = static_cast<Y*>(px);

This particular use of static_cast is safe only when you know at compile time that px actually points to a Y object. If you do not, you can use dynamic_cast to find out for sure, as in:
	Y* py = dynamic_cast<Y*>(px);

if (py)

 // actually points to a Y

else

 // doesn't point to a Y

dynamic_cast works only for polymorphic types (classes that have a virtual function) and built-in types. The dynamic_cast can be used for casting reference types, in which case the cast throws a bad_cast exception if the referent is not what you expected. The definition for bad_cast can be found in the header <typeinfo>.
6.5.2 [Mandatory] Do not rely on implicit type conversions.
Instead of using implicit type conversions that the compiler may use unexpectedly, use explicit custom methods.
Example

	class CMyClass {
public:

double toDouble() const;
};

int main(int argc, char* argv[]){
CMyClass a;
int b[] = {0,1,2};

for(int i=0; i<3; i++)
if(a.toDouble() == b[i]){ //a explicitly converted to double
}
}

Use keyword explicit with single-parameter constructors (that are not copy constructors) or constructors that the compiler may use for conversion. This would avoid accidental implicit type conversion.
Example

	class CMyClass {
public:
explicit CMyClass(int param);// Recommended

...

};

7. Programming/ Coding Standards
7.1 Pointers & References

7.1.1 [OPTIONAL] Do not overload a pointer with a numerical type.

If you declare function f(char *) and f(int), the call to f(0) would be ambiguous.

7.1.2 [OPTIONAL] Do not cast a pointer to long to an int pointer as this might result in loss of data.

7.1.3 [OPTIONAL] Do not cast an int pointer to a long pointer as this might result in loss of data.
7.2 Classes
7.2.1 Metrics

7.2.1.1 [OPTIONAL] Always limit the number of data members per class to 15.

7.2.1.2 [OPTIONAL] Always limit the number of methods per class to 20.

7.2.1.3 [OPTIONAL] Always limit the inheritance level to 10.

An unnecessarily deep inheritance hierarchy adds to complexity and represents a poor use of the inheritance mechanism.
7.2.1.4 [OPTIONAL] Limit the number of fields in structures or unions to 20.

7.2.1.5 [OPTIONAL] Limit the number of private methods per class to 10.
7.2.1.6 [OPTIONAL] Limit the number of private data members per class to 15.

7.2.1.7 [OPTIONAL] Limit the number of protected methods per class to 10.

7.2.1.8 [OPTIONAL] Limit the number of public methods per class to 20.

7.2.1.9 [OPTIONAL] Limit the number of public data members per class to 15.

7.2.1.10 [OPTIONAL] Limit the number of protected data members per class to 15.

7.2.2 Design Guidelines

7.2.2.1 [MANDATORY] Do not call virtual functions from constructors and destructors.
If a virtual function is called from inside a constructor/ destructor, it does not behave “virtually” and is always resolved to the type of constructor/ destructor. A call from a constructor to a pure virtual function results in undefined behavior. This makes the code error prone and results in defects ranging from memory leaks to program crashes.

Instead call a post-constructor as follows, document the requirements for clients of the code, call post-constructor during the first call of a member function, and use a factory that ensures proper initialization sequence. This improves code reliability and maintainability and helps in identifying runtime bugs in the application.

Example

	class Base {

public:

 Base() {

 init(); // NOT OK

 }

 virtual ~Base();

 void usefulFunction();

protected:

 virtual void init();

 void set(int value);

private:

 int _i;

 /* ... */

};

void Base::init() {

 _i = 10;

}

class Derived : public Base {

public:

 Derived() {

 init(); // NOT OK

 }

 ~Derived();

protected:

 virtual void init();

};

void Derived::init() {

 set(20);

}

//Init should be called post-construction.

class Base {

public:

 Base() {} //OK

 virtual ~Base();

 virtual void init(); // must be called post-construction

 void usefulFunction();

protected:

 void set(int value);

private:

 int _i;

 /* ... */

};

void Base::init() {

 _i = 10;

}

class Derived : public Base {

public:

 Derived() {} //OK

 ~Derived();

 virtual void init();

};

void Derived::init() {

 set(20);

}

7.2.2.2 [MANDATORY] Prefer to use abstract interfaces.
Abstract interfaces are abstract classes which contain only pure virtual member functions and no member data (state). State management is hard to follow in designs that use multiple inheritance. Using abstract interfaces simplifies the entire hierarchy design.

Example
	class A {

public:

 void foo1();

};

class B {

public:

 void foo2(); //Not recommended.
};

class C: public A, public B {

};

class A {

public:

 void foo1();

};

class B {

public:

 void foo2() = 0; //Recommended. Class B provides an

 //abstract interface.
};

class C: public A, public B {

};

7.2.2.3 [MANDATORY] Do not directly access global data from a constructor.
The order of initialization of static objects is not defined in C++ language definition. Therefore, accessing global data from a constructor could result in reading from uninitialized objects.

Example

	int a;

class A

{

public:

 A();

private:

 int b;

};

A::A() // NOT OK

{

 b = a;

}

int a;

class A

{

public:

 A();

private:

 int b;

};

A::A()

{ // OK

}

7.2.2.4 [MANDATORY] Do not make one class inherit another class more than once unless it is virtual inheritance.
Multiple inheritance leads to ambiguity and the need for virtual inheritance.

Example

	 class PreBase {};

 class Base: public PreBase {};

 class Empty {};

 class Intermediate: public Base, public Empty {};

 class NonEmpty: public PreBase {};

 class MyClass: public Intermediate, public NonEmpty, public Empty {}; // NOT OK

 class MyClass2: public Intermediate, protected Empty {}; // NOT OK

 class PreBase {};

 class Base: public virtual PreBase {};

 class Empty {};

 class Intermediate: public virtual Base, public virtual

 Empty {};

 class NonEmpty: public virtual PreBase {};

 class MyClass: public Intermediate, public NonEmpty, public Empty {}; // OK

 class MyClass2: public Intermediate, protected Empty {}; // OK

7.2.2.5 [MANDATORY] If a class has virtual functions, declare a virtual destructor.
A class that has virtual functions is intended to be used as a base class, hence you should declare a virtual destructor to guarantee that the destructor is called when the derived class object is referenced through the base class pointer. This prevents memory leak in derived class.
Example

	class A { // NOT OK

public:

 ~A();

 virtual int foo();

};

Repair:

class A { // OK

public:

 virtual ~A();

 virtual int foo();

};

7.2.2.6 [OPTIONAL] A derived class constructor should explicitly call the base class constructor and copy all members.

Constructors, destructors, and assignment operators are not inherited by derived classes. If you do not call the base class constructor explicitly from the derived class, the compiler generates a call to the default constructor of the base class. It is a good practice to initialize base classes and data members from the initialization list of derived classes.

Example

	Class DerivedClass:public BaseClass

{

 public:

 DerivedClass(const int x,

 const int y,

 const int d1,

 const int d2) ;

 private :

 int d1, d2 ;

} ;

//Call the base class constructor from the initialization //list of the derived class constructor.

DerivedClass::DerivedClass(const int x,

 const int y,

 const int d1,

 const int d2)

:BaseClass(x,y),d1(d1),d2(d2)

{

}

7.2.2.7 [MANDATORY] A pointer to an abstract class should not be converted to the pointer of a class that inherits from the abstract class.

Down casting from a virtual base is illegal and causes lot of confusion. With usage of appropriate virtual functions this should be avoided.
Example

	class B {

public:

 virtual int foo() = 0;

};

class D : public B {

public:

 int foo();

};

void main() {

 B *b;

 D *d;

 d = (D*) b; // NOT OK

}

7.3 Functions & Methods
7.3.1 Metrics
7.3.1.1 [OPTIONAL] The size of the function block should be limited to 50 lines.

7.3.1.2 [OPTIONAL] The number of parameters in a function should be limited to 5 or less.

This reduces the amount of coupling between functions. If more parameters are needed, a structure should be used to hold related data and a pointer should be passed.

7.3.1.3 [OPTIONAL] The number of blocks in a function should be limited to 10.

This results to more obvious errors, and function testing will be easier.

7.3.1.4 [OPTIONAL] The number of statements and declarations within function body should be limited to 50.

This helps localize errors easily.

7.3.1.5 [OPTIONAL] The number of function calls within a function should be limited to 10.
7.3.1.6 [OPTIONAL] Do not use excessive block nesting depth (more than 5 levels).

This makes code easier to understand and improve maintainability. Give each function a cohesive responsibility to avoid excessively long functions and nested code blocks.
7.3.2 Design Guidelines

7.3.2.1 [MANDATORY] Do not override non-virtual functions.
Do not override non-virtual functions. Change your design in order not to use the base class, or make the base class function virtual to ensure polymorphic behavior.
Example

	class Base {

public:

 void fnc();

};

class Derived: public Base {

public:

 void fnc(){}

};

int main(){

Derived d;

Base *basePtr = &d;

Derived *derivedPtr = &d;

basePtr->fnc();//calls Base::fnc()

derivedPtr->fnc(); //calls Derived::fnc()

return 0;

}

//Make the base class virtual to achieve polymorphic behavior

class Base {

public:

 virtual void fnc();

};

class Derived: public Base {

public:

 void fnc(){}

};

int main(){

Derived d;

Base *basePtr = &d;

Derived *derivedPtr = &d;

basePtr->fnc();//calls Derived::fnc()

derivedPtr->fnc(); //calls Derived::fnc()

return 0;

}

7.3.2.2 [OPTIONAL] Do not redefine a default parameter in overridden methods.
Non-virtual functions should not be over-ridden. Making a non-virtual interface indicates that the default parameter should not be changed.
Example

	class Base {

public:

 virtual void fnc(int param = 0);

};

class Derived: public Base {

public:

 void fnc(int param = 1){} //NOT OK

};

class Base {

public:

 void fnc(int param = 0){

 fncWork(param);

}

private:

 virtual void fncWork(int param);

};

class Derived: public Base {

private:

 virtual void fncWork(int param){}//OK

};

7.3.2.3 [OPTIONAL] Do not return a pointer to object created with new.

Example

	class MyClass {

public:

MyClass(int one, int two);

~MyClass();

private:

int one, two;

friend const MyClass& operator*(const MyClass& left, const MyClass& rhs);

};

inline const MyClass& operator*(const MyClass& left, const MyClass& right)

{

MyClass *result = new MyClass(left.one * right.one, left.two * right.two); //NOT OK

return *result;

}

class MyClass {

public:

MyClass(int one, int two);

~MyClass();

private:

int one, two;

friend const MyClass operator*(const MyClass& left, const MyClass& rhs);

};

inline const MyClass operator*(const MyClass& left, const MyClass& right)

{

return MyClass(left.one * right.one, left.two * right.two); //OK

}

7.3.2.4 [OPTIONAL] Use return types that enforce behavior like that of built in types.
7.3.2.5 [MANDATORY] Do not return a de-referenced local pointer initialized by dynamic allocation in the function scope as this causes a memory leak.
Example

	class A {

public:

 A(int xval, int yval) : _x(xval), _y(yval) {}

 friend A& operator+(const A& p1, const A& p2);

private:

 int _x, _y;

};

A& operator+(const A& p1, const A& p2) { // NOT OK
 A *result = new A(p1._x + p2._x, p1._y + p2._y);

 return *result;

}

7.3.2.6 [MANDATORY] Do not return “handles” to internal data from const member functions.

Non-const handles returned from const member functions allow indirect modification of private class data.
Example

	class MyClass {

public:

int * f() const { return p };

private:

int *p;

};

void check()

{

 my_c MyClass;

 int* pa = my_c.f();

 *pa = 10; // Not recommended. Modifies internal data.

}

7.3.2.7 [MANDATORY] Do not allocate resources in function argument list.
That makes the code unsafe. Perform every explicit resource allocation (for example,, new) in its own statement that immediately gives the allocated resource to a manager object (for example, shared_ptr); otherwise you can leak resources as the order of evaluation of a function’s parameters is undefined.

Example

	#include <boost/shared_ptr.hpp>

 using boost::shared_ptr;

 void Fun1(shared_ptr<int> p);

 void Fun2(shared_ptr<int> p1, shared_ptr<int> p2);

 void goo() {

 Fun1(shared_ptr<int>(new int)); //NOT OK

 Fun2(shared_ptr<int>(new int), shared_ptr<int>(new int)); // NOT OK

}

#include <boost/shared_ptr.hpp>

 using boost::shared_ptr;

 void Fun1(shared_ptr<int> p);

 void Fun2(shared_ptr<int> p1, shared_ptr<int> p2);

 void goo() {

 shared_ptr<int> p1(new int);

 shared_ptr<int> p2(new int);

 Fun1(p1); // OK

 Fun2(p1, p2); // OK

}

7.3.2.8 [MANDATORY] Public member functions should always return const handles to member data.
Public member functions are accessible to everyone. Providing non-const handles to member data in public functions allows callers to modify data members which undermines encapsulation. Hence, always return const handles to member data.

Example

	class A {
int a;

public:

 int* foo();

};

int* A::foo(){

 return &a;//Not recommended

}

class A {

int a;

public:

 const int* foo();

};

const int* A::foo(){

 return &a;//recommended

}

7.3.2.9 [OPTIONAL] Use void when a function is passed or returns no values.

In many compiler implementations, functions which do not declare return type are automatically assigned return type int. This conflicts with semantics of function implementation. Explicitly specifying parameters and return types as void clearly conveys the function intent.

Example

	#include <stdio.h>

func1() { //NOT OK

....

}

void func2(){ //NOT OK

...

}

func3(void) { //NOT OK

...

}

void func1(void) {//OK

void func2(void) {//OK

void func3(void) {//OK

7.3.2.10 [OPTIONAL] Use a typedef when declaring function pointers.

This simplifies the code and improves the readability.

Example

	void (*p)(); //Not recommended

typedef void (*p)(); //recommended

7.3.2.11 [OPTIONAL] Do not use global data in member functions as this affects the reusability and undermines encapsulation.
Example

	int gVar = 1;

class A

{

 int dMember;

 public:

 void memberFunc()

 {

 int funcVar = gvar; //NOT OK

 }

};

int gVar = 1;

class A

{

 int dMember;

 public:

 void memberFunc()

 {

 int funcVar = dmember; //OK

 }

};

7.3.2.12 [MANDATORY] Pass by reference instead of value when passing objects.

	class MyClass{

public:

int number;

};

void givenObject(MyClass c) //NOT OK

{

 cout << c.number;

}

class MyClass{

public:

int number;

};

void givenObject(const MyClass& c)//OK

{

cout << c.number;

}

7.4 Operators
7.4.1 [OPTIONAL] Avoid overloading &&, ||, and , operators.
Overloading the && and || operators breaks short circuit evaluation. The built in comma operator makes sure that the first operand is evaluated before the second operand. If the comma operator is overloaded, its operand evaluation mechanism is not guaranteed. This would result in confusing behavior.
7.4.2 [MANDATORY] Assignment operator should return *this.
· When the assignment operator is overloaded as a class member function, it

should return the object that owns the call. In this way, the assignment of user defined types mimics that of built in types.
Example
	MyClass& MyClass::operator=(const MyClass& r)
{

 ……

 return *this;

}

MyClass a, b, c;

a = b = c;

· Return reference to *this in operator= functions.

Returning reference to *this in operator= functions protects you from not knowing where the temporary gets destroyed, and allow you to declare the operator=’s parameter as a reference to a const. This is safer than just declaring it to be a reference.

Example
	class A

{

public:

 explicit A(int i = 0) : _i(i) {}

 A& operator=(const A& a) // Violation

 {

 A* b = 0;

 if (&a == this) {

 return *b;

 }

 this->_i = a._i;

 return *b;

 }

private:

 int _i;

};

class A

{

public:

 explicit A(int i = 0) : _i(i) {}

 A& operator=(const A& a) // OK

 {

 if (&a == this) {

 return *this;

 }

 this->_i = a._i;

 return *this;

 }

private:

 int _i;

};

7.4.3 [OPTIONAL] Assignment operator should check for assignment to self and handle it correctly.
Example

	MyClass& MyClass::operator= (const MyClass& rhs)
{
 if (this != &rhs) {
 ...
 }

 return *this;
}

7.4.4 [OPTIONAL] Binary operators should return const objects not a reference.

7.4.5 [OPTIONAL] Assignment operator should assign to all class members.
7.5 Statements and Expressions
7.5.1 If :

7.5.1.1 [OPTIONAL] Avoid using negation in if-else conditions.
Example

	void main(int argc, char* argv[]) {

for (int i = 0; i < argc; i++) {

if (! isalpha(argv[0])) { // Not recommended

cout << "Not a letter";

} else {

cout << "A letter";

}

}

}

void main(int argc, char* argv[]) {

for (int i = 0; i < argc; i++) {

if (isalpha(argv[0])) { // recommended

cout << "A letter";

} else {

cout << "Not a letter";

}

}

}

7.5.1.2 [OPTIONAL] Avoid using if/else statements for short conditions.

If the statement following the if-else is a simple assignment, consider using the conditional expression ("?:") construct instead.
Example
	void main(int argc, char* argv[]) {

ternaryVariableAssignment(argc, argv);

}

void ternaryVariableAssignment(int argc, char* argv[]) {

int j = 0;

for (int i = 0; i < argc; i++) { // Not recommended

if (i > 5) {

j = i;

} else {

j = 10;

}

}

}

void main(int argc, char* argv[]) {

ternaryVariableAssignment(argc, argv);

}

void ternaryVariableAssignment(int argc, char* argv[]) {

int j = 0;

for (int i = 0; i < argc; i++) {

j = (i > 5) ? i : 10; //Recommended

}

}

7.5.1.3 [OPTIONAL] Use if-else instead of switch statements with few branches.
Example

	void main(int argc, char* argv[]) {

switch (argc) { //Not recommended

case 0:

cout << "No parameters";

break ;

default :

cout << "Parameters: ";

void main(int argc, char* argv[]) {

if (argc == 0) { //recommended

cout << "No Paramaters";

} else {

cout << "Parameters: ";

7.5.1.4 [MANDATORY] Do not compare character to constants which are out of character range.
Example
	int foobar(char c)

{

 if(c> 300) { //Violation

 return 3;

 }

 return 0;

}
int foobar(char c)

{

 if(c> 25) { //OK

 return 2;

 }

 return 0;
}

7.5.1.5 [MANDATORY] Do not check floats for equality; instead check for less than or greater than.
Checking floats for equality makes the code more susceptible to errors. Hence, check for less than or greater than.

Example

	void func(float a, int b)

{

 If(a==b){ } //Not Recommeded

}

void func(float a, int b)

{

 If(a>=b){ } //Recommeded

}

7.5.1.6 [OPTIONAL] Always write separate logical tests in separate conditional expressions.
This improves readability and maintainability of the code.

Example

	if(i != j > 0) { } //NOT OK

if(i!=j && j>0) { } //OK

7.5.2 For :

7.5.2.1 [OPTIONAL] Do not use breaks in for-loops.

This makes the code easier to understand.
7.5.2.2 [OPTIONAL] Do not use a for-loop without a condition.
Example

	void main(int argc, char* argv[]) {

for (int i = 0; ; i++) { //Not recommended

cout << argv[i];

if (i < argc) {

break ;

}

}

}

void main(int argc, char* argv[]) {

for (int i = 0; i < argc; i++) { //recommended

cout << argv[i];

}

}

7.5.2.3 [OPTIONAL] Using Pre-increment and Pre-decrement is more efficient when returned result is unused.
Example
	int main()
{

for(int j =0; j<10; j++){ //Not recommended

}

printf("%i", array[j]);

}

return 0;

}

int main()

{

for(int j =0; j<10; ++j){ //recommended

}

printf("%i", array[j]);

}

return 0;

}

7.5.3 Switch :

7.5.3.1 [OPTIONAL] Avoid use of switch statements with many cases.
7.5.3.2 [OPTIONAL] Do not use a switch statement to represent a value that is effectively Boolean.
This may lead to errors in code.

Example
	switch(data1 > data2)//Not recommended

{

case 0: break;

default:;

}

7.5.3.3 [OPTIONAL] Always include a "default" case in a switch statement.

This makes the developer think about this case -- even if all that happens in the default case is an ASSERT statement.

7.5.4 While :
7.5.4.1 [OPTIONAL] Avoid making assignments in conditional statements.
Example

	void main(int argc, char* argv[]) {

while(a = getNum()) { //Not recommended

cout << "A is still 5";

}

}

void main(int argc, char* argv[]) {

int a = 5;

while(a == getNum()) { //recommended

cout << "A is still 5";

}

7.5.5 Other :
7.5.5.1 [MANDATORY] Do not convert constants to non-constants.

Converting constants to non-constants undermines the data integrity by allowing modification of values which are assumed to be constant. This also causes confusion and reduces readability since constant variables cannot be relied on to remain constant.
Example
	void f(const int* x) {

int* y;

y = (int*)x;//Not Recommended

const int*z;

z = (const int*)x;// Recommended

}

7.5.5.2 [OPTIONAL] Limit the cyclomatic complexity to less than 30.

Cyclomatic complexity is calculated according to the formula:
CC = Number of decisions + 1.

By decision we mean every occurrence of:
-if
-for
-while
-do...while
-switch
-case
-catch
-conditional expression (a ? b : c)
-logical operator (&& and ||)
More the cyclomatic complexity, more error-prone is the code.

7.5.5.3 [OPTIONAL] Do not use magic numbers.

Use of literal constants in code makes it difficult to understand and maintain the code. Use symbolic values instead.

Example

	const int MIN = 8; // OK

void bol(int);

int fun(int a[], int b) {

 int e;

 int f = 0; // OK

 int i = 5; // OK

 a[i] = MIN; // NOT a[5] = 56;

 e = MIN; // NOT e = 8;

 bol(a[5]); // NOT bol(56);

 return MIN; // NOT return 8;

7.5.5.4 [OPTIONAL] Use EOS to terminate a string instead of NULL.
NULL is not guaranteed to be defined as zero. Generally, use defined constants rather than hard coded values.

Example

	str[7] = NULL; //Not recommended

str[7] = EOS;; //recommended

7.5.5.5 [OPTIONAL] Do not use continue statements.

Avoid using continue statements as they make the code difficult to read.
7.6 Memory Management
7.6.1 [OPTIONAL] Do not call delete on non-pointers.

Do not call delete on non-pointers as this would cause a violation because of invalid operand.
7.6.2 [OPTIONAL] Destructors should delete memory allocated in constructor.
7.6.3 [MANDATORY] If new is used to allocate an array, make sure you specify delete for an array.

7.6.4 [MANDATORY] Do not hide the normal form of new.
Provide default values for any extra parameters, or define the default form of new as well.

7.6.5 [MANDATORY] If an operator new function is defined, then define operator delete as well.
7.6.6 [MANDATORY] Ensure that the 'new' function(s) behavior is consistent with the default operator new.
If you do not adhere to convention when you define ‘new’, you will cause confusion and inconsistencies for the users of the new operator.

7.6.7 [MANDATORY] Use the same form in corresponding calls to new/malloc
and delete/free else an incorrect number of destructors may be called.

Example

#include<stdlib.h>

void foo() {

char* ptr1 = (char*) malloc(19);

char* ptr2 = new char[10];

delete ptr1;//Violation

free (ptr2);//Violation

free (ptr1);//OK

delete ptr2;//OK
}
7.7 Security

7.7.1 [MANDATORY] Do not use gets(), use fgets() instead.

Gets() continue to store characters past the end of the buffer and can be used to break computer security. Hence it is extremely dangerous to use. Use fgets() instead.

Example

	#include <QtCore/QMutex>

#include <limits.h>

#include <stdio.h>

void main()

{

 char line[100];

 printf("Input a string: ");

 gets(line); // Violation

 printf("The line entered was: %s\n", line);

}

Repair:

#include <stdio.h>

void main()

{

 char line[100];

 printf("Input a string: ");

 fgets(line, 100, stdin); // OK

 printf("The line entered was: %s\n", line);

}

7.7.2 [OPTIONAL] Do not use getpw function in program code.

Function getpw is insecure as it could cause a buffer overflow.

Example
	# include <pwd.h>

include <sys/types.h>

int main()

{

char* buffer;

getpw(0,buffer); //Not recommended

struct passwd * pwd = getpwuid(0); //recommended

return 0;

}

7.7.3 [OPTIONAL] Do not use unsafe string functions as they can cause buffer overflow.

Unsafe string functions are strcpy, strcat, sprintf, vsprintf and gets. These are dangerous functions as they do not check the bounds. Instead use strncpy, strncat, snprintf and fgets respectively.
8. Quick Reference
· Include statements must be located at the top of a file only.

· Avoid source code files that are longer than 500 (default value) or the specified number of lines.

· Start public, protected, private, and friend labels in column zero of class declarations.

· Use explicit public labels for all struct public fields, and use explicit private labels for all private class members.

· Declare functions in the order public-protected-private.

· A class should contain default constructor, copy constructor, destructor, and assignment operator.

· A destructor has to be declared virtual in a base class.

· Declare member functions const when no changes are made.
· If you declare a binary operator function, you should also declare an operator= function.

· Always make base class constructor as public and virtual, or protected and non-virtual.

· Do not declare data members public or protected.

· Start all function definitions and declarations in column zero.

· When declaring functions, the leading parenthesis and the first argument are to be written on the same line as the function name.

· Declare variables initialized to numeric values or strings in a highly visible position; whenever possible collect them in one place.

· Declare each variable with the smallest possible scope and initialize it at the same time.

· In the function implementation, do not use numeric values or strings; use symbolic values instead.
· Do not use the same variable name in outer and inner scope.
· Declare each variable in a separate declaration statement.
· Initialize fields that are not const or pointers instead of assignment.
· Do not use the same name for local variables / parameters and class / parent classes / parent structs variables.
· Initialize all static class members.
· Do not declare the array size when the array is initialized.
· Do not declare the size of the array when the array is passed into a function as a parameter.
· Initialize all pointer variables.
· Do not initialize a reference to an object whose address can be changed.
· Initialize all data members in the class constructors.

· Let the order in the initialization list be the same as the order of declaration in the header file: first base classes, then data members.
· Avoid unnecessary copying of objects that are costly to copy.
· A function must never return, or in any other way give access to, references or pointers to local variables outside the scope in which they are declared.

· If objects of a class should never be copied, then the copy constructor and the copy assignment operator should be declared private and not implemented.

· If objects of a class should be copied, then the copy constructor and the copy assignment operator should be implemented, with the desired behavior.
· Assignment member functions should work correctly when the left and right operands are the same object.
· All Class names should have a capital letter(s) prefix which is followed throughout a particular project. This prefix normally can be something, which indicates the project or some generic letter as ‘C’.

· All letters of the class name should be lowercase, except the first character in a name that should be uppercase. It should also be noted that the name of a class should be logical to the context of its functionality as far as possible. This makes the class more understandable.

· For methods of a class, all letters should be lowercase, except the first character in a name that should be uppercase. It should also be noted that the name of a method should be logical to the context of its use as far as possible. This makes the method more readable and easily maintainable.

· All the arguments naming should follow some naming convention, for example, Hungarian notation.

· The initial characters indicating the type of the argument must be lowercase.

· All words, beginning after the first letter(s) indicating the type, should be uppercase.

· All class member variable names should consist of three parts, namely, scope:type:logical name written as <scope>_<type><LogicalName>. All the variables should uniformly follow some naming convention. For example, we could follow the Hungarian notation.

· Pointer variables should be prepended by a ‘p’ or an ‘lp’ in most cases.

· Place the ‘*’ close to the data type and not to the variable name.

· Reference variables should be prepended with an ‘r’ or preferably a ‘ref’.
· Global variables if any should be prepended with a ‘g_’.
· Static variables may be prepended with an ‘s_’.
· When possible for types, based on built-in types, make a typedef.
· Typedefs should preferably be in ALL UPPERCASE except for typedefing classes.

· Labels should be ALL UPPERCASE with ‘_’ for word separators.
· All structure tags and names should be UPPERCASE. The structure tags should be prepended with the word "tag_" followed by the tag name UPPERCASE. All the structure declarations should have a pointer member prepended with an "LP" or a "P" followed by the structure name.

· Array variables and parameters should be prepended with an ‘rg’.
· Dynamically allocated arrays should be prepended with a ‘prg’.
· Ifstream type variables and parameters should be prepended with an ‘if’.
· Istream type variables and parameters should be prepended with an ‘is’.
· Ofstream type variables and parameters should be prepended with an ‘of’.
· Ostream type variables and parameters should be prepended with an ‘os’.
· The general format of variable names is: StoragePrefix + “_” + TypePrefix + VariableName.
· Declare local variables at the point where they are needed.

· Take care of variables declared in a for-statement.

· Use braces in a case label in a switch statement.
· Do not assign to loop control variables in the body of for-loop.
· Avoid a for-statement without initialization and an increment counter.

· Do not use the enum keyword to declare a variable.
· Pointers should be prefixed with a 'p' and the type of the variable.

· Place the ‘*’ close to the pointer type, not the variable name.
· In case of multiple declarations in same line, the pointer modifier only applies to the closest variable, not all of them, which can be very confusing. It is always a good practice to have single declaration in one line.
· Comments are not a substitute for clearly written code.
· Comments must be indented at the same level as the code block that they describe.
· Comments must be provided for each non-trivial variable declaration, or any variable which is not self-commenting.

· Comments should be provided for each field or member of a structure and class.
· These comments should provide information about usage, not repeat name or type information.
· These comments should be aligned horizontally for ease of readability.
· If a comment does not fit to the right of a structure element, it should either be wrapped on the following lines as a multi-line comment, or go on a line by itself before the element being commented.
· Comments should be provided for each source and header file.
· Comments should be provided for each function/method.
· "Line-drawing" to enclose comment blocks should use only the asterisk. Do not use minuses or equals.
· Single-line comments can be formed with either C++ ("//") or C ("/* */") comments.
· The use of C++ style single line comment is recommended.
· Comments for a single line of code should be offset by at least one tab from the end of the code line.
· Comments for actual parameters may be in-line.
· The use of const or enum values for NULL parameters in lieu of comments is strongly encouraged.
· Multi-line comments should be formatted with C comments ("/* */") or C++ comments ("//").
· Use of C style multi-line comments is recommended.
· Comments in "boxes" are discouraged, unless they are file or function comments.
· Start with a high level summary of what a function or method is supposed to do. Fill in some high level details of how it does that as comments in the body. Drill down each of those details iteratively.

· Do not use separators (a long line of dashes, stars, or the like) in comments. They are difficult to create or maintain, and they provide little, if any, additional readability.

· Comment the end of class and function definitions, and the end of long loop or conditional statements. This allows the person reading the code to immediately know what a closing curly brace ('}') belongs to.

· Every function/method in a file should have a function comment.
· The comment block is initiated by the /** (forward slash and two stars) symbol.

· The first line of comment, beginning with a ‘*’, gives a brief description of the function and is ended with a full stop.

· The second line is used to give a more detailed description of the function and is also ended with a full stop.

· The third line of comment uses the @param keyword that creates a parameter section in the documentation for this function and describes the specified parameter with the text that follows.

· The @see keyword creates a “see also” section that creates a link in the documentation to other items that may be connected to the current function.

· The @return keyword creates a section in the documentation detailing return values.

· The comment block is ended by the */ (star forward slash) symbol.

· Indenting of description sections under headings is required.
· Do not put blank lines between the function header and declaration.
· In the function header section that described parameters (list of @param lines) or "Returns" section, if a handle or pointer is returned, it should be documented whether the caller is expected to dispose of it or not.
· Always put space after ‘,’.
· Always put space between binary arithmetic, logical and bitwise operators and operands.
· The use of parenthesis is to make the evaluation order of complex expressions more clear and encouraged (even if the parenthesis is redundant for the normal order of operations).
· Always place left parenthesis directly after the function name.

· Always place a maximum of one ASCII space character following the opening parenthesis in conditional statements.

· Always use a single ASCII space between conditional keyword and its opening parenthesis.

· Always use parenthesis with the the “return” and “sizeof” statements.

· Line breaking must be consistent on a file level.
· Lines in excess of 80 characters should be broken.
· Unary arithmetic operator is never separated from its operand.
· Unary logical, dereference, and bit operator is never separated from its operand.
· Reference declaration operator is never separated from its operand. It is always separated from the type and list element separators.

· Binary, bit, and logical arithmetic operator is always separated from its operand.

· Binary dereference operator is never separated from its operand.
· Scope Resolution Operator :: is never separated from the scope or the identifier.
· Assignment Operators = += -= *= /=, Comparison Operators = != > < >= <=, and Conditional (Ternary) Operator ?: is always separated from its operands by a space. Non trivial sub-expressions should be closed in parentheses.
· The preprocessor directive is separated from any arguments by a space.
· Within the code, ‘#’ of all preprocessor directives should be aligned in the left most column.

· Use <iostream> functions instead of <stdio.h> functions.

· Do not add relative path names in #include statements.

· The use of “#define” preprocessor is highly discouraged. Use const, enum, or inline functions where appropriate. Only use “#define” preprocessor directive if there is no other alternative.

· “#define” preprocessor directives must be formatted as follows: #define Symbol Value.
· Do not use macros in include statements.

· Comments can be either C ("/* */") or C++ ("//") comments.

· Comments are separated from their #if element by one tab or space.
· Comments include all the related #if conditions without the "#"characters.
· Comments for #elif, #else, and #endif statements should describe what was just finished.

· If one element of the #if structure is commented, all elements are commented.
· Comments are required whenever the enclosed code exceeds about 10 lines.
· Comments are required on all but innermost block of nested #if structures.
· If an entire function is being enclosed in an #if...#endif block, include function header comment inside the #if...#endif block.
· Only one function may be enclosed in each #if.
· Never use malloc and free.

· Set a pointer to 0 after deleting an object.

· Use [] when deleting an array of objects.

· A class allocating an object should also destruct it.

· Use C++ casts instead of C casts.

· Do not overload a pointer with a numerical type.

· Do not cast a pointer to long to a pointer to int, as this might result in loss of data.

· Always limit the number of data members per class to 15.

· Always limit the number of methods per class to 20.

· Always limit the inheritance level to 10.

· Limit the number of fields in structures or unions to 20.

· Limit the number of private methods per class to 10.

· Limit the number of private data members per class to 15.

· Limit the number of protected methods per class to 10.

· Limit the number of public methods per class to 20.

· Limit the number of public data members per class to 15.

· Limit the number of protected data members per class to 15.

· Do not call virtual functions from constructors and destructors.

· Prefer to use abstract interfaces.

· Do not directly access global data from a constructor.

· Do not make one class inherit another class more than once unless it is virtual inheritance.

· If a class has virtual functions, declare a virtual destructor.

· A derived class constructor should explicitly call the base class constructor and copy all members.

· A pointer to an abstract class should not be converted to the pointer of a class that inherits from the abstract class.

· The size of the function block should be limited to 50 lines.

· The number of parameters in a function should be limited to 5 or less.

· The number of blocks in a function should be limited to 10.

· The number of statements and declarations within function body should be limited to 50.

· The number of function calls within a function should be limited to 10.

· Do not use excessive block nesting depth (more than 5 levels).

· Do not override non-virtual functions.

· Do not redefine a default parameter in overridden methods.

· Do not return a pointer to object created with new.

· Use return types that enforce behavior like that of built in types.

· Do not return a de-referenced local pointer initialized by dynamic allocation in the function scope.

· Do not return “handles” to internal data from const member functions.

· Do not allocate resources in function argument list.

· Public member functions should always return const handles to member data.

· Use void when a function is passed or returns no values.

· Use a typedef when declaring function pointers.

· Do not use global data in member functions as this affects the reusability and undermine encapsulation.

· Pass by reference instead of value when passing objects.
· Avoid overloading &&, ||, and , operators.

· Assignment operator should return *this.

· Assignment operator should check for assignment to self and handle it correctly.

· Binary operators should return const objects, not a reference.

· Assignment operator should assign to all class members.

· Avoid using negation in if-else conditions.

· Avoid using if/else statements for short conditions.

· Use if-else instead of switch statements with few branches.

· Do not compare character to constants which are out of character range.

· Do not check floats for equality; instead check for less than or greater than.

· Always write separate logical tests in separate conditional expressions.

· Do not use breaks in for-loops.

· Do not use a for-loop without a condition.

· Using Pre-increment and Pre-decrement is more efficient when returned result is unused.

· Avoid use of switch statements with many cases.

· Do not use a switch statement to represent a value that is effectively Boolean.

· Always provide the “default” label in switch statements.
· Avoid making assignments in conditional statements.

· Do not convert constants to non-constants.

· Limit the cyclomatic complexity to less than 30.

· Do not use magic numbers.

· Use EOS to terminate a string instead of NULL.

· Do not use continue statements.

· Do not call delete on non-pointers.

· Destructors should delete memory allocated in constructor.

· If new is used to allocate an array, make sure you specify an array.

· Do not hide the normal form of new.

· If an operator new function is defined, then define operator delete as well.

· Ensure that the 'new' function(s) behavior is consistent with the default operator new.

· Use the same form in corresponding calls to new/malloc and delete/free.

· Do not use gets();use fgets() instead.

· Do not use getpw function in program code.

· Do not use unsafe string functions as they can cause buffer overflow.

9. References:

· A Coding style guide for Java Workshop and Java Studio Programming – Achut Reddy; Sun Micro Systems; 20 May 1998

· Java Coding Style Guide – Achut Reddy; Server Management Tool Group – Sun Micro Systems; 30 May 2000

· C/C++ Programming Style Guidelines – Fred Richards

· Elements of Java Style – Roguewave Software; Cambridge University Press; 2000
· Effective C++ - Scott Meyers

· More Effective C++ - Scott Meyers

· C++ Strategies and Tactics - Robert Murray

· C++ Programming Style - Tom Cargill

· Advanced C++ Programming Styles and Idioms - James Coplien

· Large Scale C++ Software Design - John Lakos

· The Design and Evolution of C++ - Bjarne Stroustrup

· The Annotated C++ Reference Manual - Margaret A. Ellis and Bjarne Stroustrup

· Design Patterns : Elements of Reusable Object Oriented Software - Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides

· ANSI/ISO C++ Professional Programmers' Handbook - Que Series

Online References:
· C++ Report (www.creport.com)

· C++ Users Journal (www.cuj.com)

· For a complete listing of links of all kinds of Resources, tutorials, ANSI/ISO Draft standards, news groups, FAQs , visit www.cetus-links.org/oo_c_plus_plus.html

· For wealth of information and links, visit the Creator of C++, Bjarne Stroustrup's web site (www.stroupstrup.com).

Page 12 of 83

