PL/SQL Coding Standards
[image: image1]

[image: image2.png]WIPRO

Applying Thought

PL/SQL CODING STANDARDS
Wipro Technologies
Revision History
	Version
	Date
	Sections affected
	Brief description of change
	Prepared By
	Reviewed By
	Approved By

	0.x Draft
	
	Complete document
	First draft for review
	 Ganesh Girirajan
	Sanjeev Thatavarthy, Neena Mohan
	

	1.0
	
	
	Updated version post review
	 Ganesh Girirajan
	
	 Srinivas Pattabi (Datawarehousing CoE)

Affected Groups

	

	

	

	

Table of Contents

1. 4Introduction

· 4Document Purpose

· 4Scope of this document

2. 5Naming Conventions

· 5Database Object Naming Conventions

· 9Program elements Naming conventions

· 11File Naming Conventions

3. 12Coding Standards

· 12Database Objects Change Control

· 13Producing Output from within PL/SQL

· 13Variable Declaration

· 13Type Definitions

· 14Cursors

· 17PL/SQL block Structure

· 19General PL/SQL Coding Guidelines

· 23Package, Procedure, Function

· 24Exception Handling

4. 26PL/SQL Tables and Records

5. 27Standards for Optimizer Hints

6. 28Database Object Creation Standards

· 28Table Creation Template

Introduction

In order to provide PL/SQL code that is easy to understand and maintain, it is necessary to follow coding guidelines and standards. This document gives the guidelines and standards that can be used while programming in Oracle PL/SQL.

Document Purpose

The purpose of this document is to define:

· Standards that apply to the creation of each type of database object

· Coding practices to be used in PL/SQL coding.

Scope of this document

The scope of this document is to define the naming Conventions, Guidelines and Coding standards for Oracle PL/SQL Code. However, the standards pertaining to any graphical user interface using Oracle Developer or Oracle Designer is out-of-scope for this document.

Naming Conventions

Database Object Naming Conventions

Table

[RULE]

· Maximum of 30 characters (application_descriptive short name_tb)

· All table names should have application name at the beginning

· Next character is a ‘_‘

· Next- descriptive short name of the table

· Next character is a ‘_‘
· tb - at the end indicates it is a table
Example: EQ_ACCT_FACT_TB
View

[RULE]

· Maximum of 30 characters (e.g. application descriptive short name_vw)

· All view names should have application name at the beginning

· Next character is a ‘_’

· Next- descriptive short name of the table on which it is based.

· Next character is a ‘_’

· vw - at the end indicates it is a view

Example: EQ_ACCT_FACT_VW
Naming Materialized Views

[Suggestion]

The name of a materialized view must conform to standard Oracle naming conventions. However, if the materialized view is based on a user-defined prebuilt table, then the name of the materialized view must exactly match that table name.
If you already have a naming convention for tables and indexes, you might consider extending this naming scheme to the materialized views so that they are easily identifiable. For example, instead of naming the materialized view sum_of_sales, it could be called sum_of_sales_mv to denote that this is a materialized view and not a table or view.

Index

[RULE]

· Maximum of 30 characters

· First table name in short on which the index is created

· Next character is a ‘_’

· Next character is the column name on which it is created

· Next character is a ‘_’

· IDX at the end indicates an INDEX

 Example: EQ_ACCT_FACT_BROKER_NM_IDX
[Suggestion]

For a composite index we can use Tablename_comp_idx to indicate it is an index on several columns.
Anyway for all practical purposes, we can follow the project specific notation for indicating a composite index.

It is understood by default that an index is created for a faster retrieval on certain column(s).

Also, let us assume, if it is an SCD table, we may have more than one index on a certain groups of column. In that case, the naming convention may fail to serve the purpose. This can lead a person to put the naming convention as

Tablename_comp1_idx

Tablename_comp2_idx

Table Column

[RULE]

· Max. Of 30 characters (descriptive short name)

· Give a Descriptive name for the table column

Example: ORDER_NUMBER
[Suggestion]
It would be better if we can prefix the column name with an abbreviation of the table name. This would help us, when we do not know the exact column name, and would like to search for a particular column name, belonging to a table.

Example: Say the table name is: EQ_ACCT_FACT_TB, we can probably name the column as AF_ORDER_NUMBER, AF_... etc.
Column (Foreign key Constraint)

[RULE]

· Max. of 30 characters (FK_Current_table_Parent_table)
· fk - at the beginning indicates it is a foreign key

· Next character is a ‘_’.

· Next the current table name

· Next character is a ‘_’.

· Next the Parent table name

Example: FK_EMP_DEPT
Column (Primary key Constraint)

[RULE]

· Max. of 30 characters (PK_ short form of the tablename_Column_name)

· pk - at the beginning indicates it is a primary key

· Next character is a ‘_’.

· Next the table name
· Next character is a ‘_’.

· Next the column name which is the Key
Example: PK_EMP_EMPNO for EMPLOYEE table
	Constraint type
	Abbreviation

	references (foreign key)
	fk

	Unique
	un

	primary key
	pk

	Check
	ck

	Not null
	nn

<table name>_<column_name>_<constraint abbreviation>

[Suggestion]

In reality, this may not be possible in some cases because of the character limitation on names inside Oracle. When the name is too long, we will follow these steps in order:

1. Abbreviate the table name.

2. Truncate the column name until it fits.

If the constraint name is still too long, you should consider rewriting your entire data model
[Notes]
· If you have to abbreviate the table name for one of the constraints, abbreviate it for all the constraints

· If you are defining a multi column constraint, try to truncate the two column names evenly

Synonyms
[RULE]

· Synonyms should have the same name as table or view it is based on.

Sequences

[RULE]

· Max. of 30 characters (descriptive short name_seq_s).

· Sequence name should be name of the table the sequence number is used, or.

· Some descriptive name which the sequence number is used.

· The last character should be s - to indicate it is a sequence.
Example: ord_id_seq_s for a sequence used to generate order ids.
Triggers

[RULE]

· Max. of 30 characters
<table name alias>_<event code><dml code><Operation code>_trg
· First Table name alias - Short name for the table on which this trigger is written

· Event code
The event codes are
A - After , B- Before

· dml code
I - Insert
U - Update
D - Delete

· Operation code
R - Row operations
S - Statement operations

· trg - at the end to indicate it is a trigger

Example: ItablTM_BIR_TRG

Functions

[RULE]
· Function Name should have max. of 30 characters (application
name_function name_fnc).
Function name should start with the prefix application name.
· Next character is a ‘_’.

· Next descriptive name of the function.

· Last 3 characters -fnc to indicate it is a function.
Example: GEMS_TP_CALCULATION_FNC

Procedures

[RULE]
· Procedure Name should have max. of 30 characters (application name_procedure name_PROC)
Procedure name should start with prefix application name.

· Next character is a ‘_’.
· Next with descriptive name of the procedure.

· Last 3 characters - proc to indicate it is a procedure.

Example: GEMS_COMPUTE_TP _PROC

Packages

[RULE]
· Package Name should have max. of 30 characters (application
name_package name_pkg)
Package name should start with prefix application name.

· Next character is a _ .

· Next with descriptive name of the package.

· Last 3 characters - pkg to indicate it is a package.

Example: GEMS_COMPUTE_MICV_PKG
Note on tablespaces

In DWH, a table space naming convention should never be tagged to a particular table. Typically, we will have staging area, master table, dimensions and facts, which represent the core tables.

So, for a stage table the naming convention for tablespace can be

[SchemaName]_STAGE_DATA_500K (can be 1M, 2M etc depending on the storage reqmnt)

[SchemaName]_STAGE_INDEX_500K (for all indexes, PKs etc)

[SchemaName]_CORE_MASTER_DATA_10M (for all core master tables)

[SchemaName]_CORE_MASTER_INDEX_10M (for all indexes)

[SchemaName]_CORE_DATA_500M (for all core tables)

[SchemaName]_CORE_INDEX_500M (for all indexes)

This will make Oracle to write data concurrently into different table spaces at the same time, enhancing the performance.

Program elements Naming conventions

Variable Naming Convention:

Oracle back-end procedures & triggers allow us to declare and use different kinds of variables. This section describes the conventions to be followed when declaring them. This helps in easy identification of a variable type in the code, and helps in debugging and maintaining the application better.

[Suggestion]

Tips for declaring variables

· Whenever declaring variables, use meaningful variable names rather than very short ones with one or two characters.

· Ensure that the variable names do not exceed 30 characters.

· Use lower case for the variable name.

For example to declare a variable name for employee name, declare something like ‘vr_employee_name’ (vr prefix denotes that the data type is VARCHAR2, Refer to the table below for different prefix codes).

Use the appropriate prefix codes to the variable names, which denote the data type.

The following are the different data types and their naming conventions along with their prefix codes.

	Data Type
	Prefix
	Example

	BOOLEAN
	bl
	bl_exists

	CHAR
	Ch
	ch_status_flag

	DATE
	Dt
	dt_dob

	INT
	in
	in_count

	LONG
	ln
	ln_biodata

	NUMBER
	Nm
	nm_po_number

	VARCHAR2
	Vr
	vr_address

	RAW
	Rw
	rw_screen

	PLSQL TABLE
	T
	t_shift_details

	ROWID
	ri
	ri_lv_adm_rowid

	RECORD TYPE
	Rc
	rc_dept (Should be used for declaring %ROWTYPE variables. For e.g.

rc_dept dept%ROWTYPE;

[Can be a RULE]
It would be better if we can prefix ‘v_’ to the above standards under variable declaration conventions. This is the traditional way of declaring variables proposed by Authors.

Eg: v_vr_address – a column of type varchar2, v_rw_screen – a column of type raw etc.

PL/SQL
[RULE]

Prefix scalar variable names with v_
Prefix global variables (including host or bind variables) with g_
Prefix procedure or function call parameters (including sql*plus substitution parameters) with p_

Prefix record collections with r_ (alternatively suffix with _record)
Prefix %rowtype% collections with rt_ (alternatively suffix with _record_type)

Prefix pl/sql tables with t_ (alternatively suffix with _table)
Prefix table types with tt_ (alternatively suffix with _table_type)

Prefix exceptions with e_

Constants
Declared constants must be given a prefix of "c_".
Example: c_def_price

Arrays
An array name must be given a prefix of "arr_".
Example: arr_item_number

Cursors
A cursor name should be given a prefix of “cur_".
Example: CURSOR cur_item IS
Exceptions
Exception name should be descriptive of the exception message and must be given a prefix of "e_"
Example: e_invalid_name

Records
A record name should be prefixed with "rec_"
Example: TYPE rec_item IS RECORD.

Substitutions

SQL * Plus substitution parameter names must be given a prefix of "p_" .
Example: &p_salary.
File Naming Conventions
PL/SQL stored package source file names:

· First word should always be the short application name followed by a ‘_’.

· Next should be the short name of the module for which the package is used.

· Next three characters - pkg for package

Example: fxdinc_crt_pkg.sql

PL/SQL stored procedure source file names:

· First word should always be the short application name followed by a ‘_’.

· Next should be the short name of the module for which the procedure is used.

· Next three characters - PROC for procedure

Example: fxdinc_crt_PROC.sql

PL/SQL function source file names:

· First word should always be the short application name followed by a ‘_’.

· Next should be the short name of the module for which the function is used.

· Next three characters - fnc for function

Example: fxdinc_crt_fnc.sql

PL/SQL trigger source file names:

· First word should always be the short application name followed by a ‘_’.

· Next should be the short name of the module for which the trigger is used.

· Next three characters - trg for trigger.

Example: fxdinc_crt_trg.sql

Coding Standards

Database Objects Change Control

For each PL/SQL program, which runs as a concurrent program, the following steps should be followed to allow the display of the program version in the Oracle, log file:
· Define a SQL*Plus user variable to store the program Version Number

· DEFINE VERSION = 1.0

· Define a local constant for use within the PL/SQL program

· c_version CONSTANT VARCHAR2(5) := '&VERSION';

· Call the standard report header procedure from the start of the main PL/SQL block

· nfc_report_header(c_version);

· For each change that is made to the program, the following steps should be carried out:

· Add appropriate comments to the header section

· || Date Author Ver Comments
|| -------- -------- ----- ---
|| 18/05/99 D.East 1.1 Added new error handling

· Modify the SQL*Plus user variable which stores the program Version Number

· DEFINE VERSION = 1.1
[Notes]

The DBMS_APPLICATION_INFO package provides a mechanism for registering the name of the application module that is currently running with the RDBMS. Registering the name of the module allows DBAs to monitor how the system is being used. It also allows them to do performance analysis and resource accounting by module. The purpose of the package is auditing or performance tracking.

CREATE OR REPLACE

PROCEDURE my_session_info_proc AS

 dummy NUMBER;

BEGIN

 DBMS_APPLICATION_INFO.SET_CLIENT_INFO('This is a test');

 DBMS_APPLICATION_INFO.SET_MODULE('my_module.sql','Updating test');

 FOR i IN 1 .. 100000

 LOOP

 DBMS_APPLICATION_INFO.SET_ACTION('In loop at: i='||TO_CHAR(i));

 UPDATE mytest SET attr2='Test'||TO_CHAR(i) WHERE attr1=1;

 IF MOD(i,50) = 0 THEN COMMIT; END IF;

 END LOOP;

COMMIT;

END;

When an application registers with the database, its name and actions are recorded in the 'MODULE' and 'ACTION' column of the V$SESSION and V$SQLAREA views found in the data dictionary. The V$SESSION view lists the session information for each current session such as the username, operating system machine name, terminal name, program name, name of the current module, etc.

Producing Output from within PL/SQL

Output from the PL/SQL block should be written to the concurrent request log or the concurrent request output file. Calling the procedure FND_FILE.PUT_LINE does this.
The command to write to the Concurrent request LOG is

FND_FILE.PUT_LINE (FND_FILE.LOG, <output message>);

The command to write to the Concurrent request OUTPUT file is

FND_FILE.PUT_LINE (FND_FILE.OUTPUT, <output message>);
[Suggestion]

The PL/SQL code should not use the DBMS_OUTPUT procedure for anything other than debugging code outside of the Applications schema harness.

Variable Declaration

· Variables should be declared as follows:
<DataType><tab><var>

· One-decimal array should be declared as follows:
<Datatype><tab><arrname[number]>

· An initialized one-dimensional array should be declared as follows:
<Datatype><tab><var[number]> = <{var1, var2, var3}>

· A multi-dimensional array should be declared as follows:
<Datatype><tab><arrname[no-of-rows, no-of-columns]>

· To use a structure already defined, do as follows:
<struct-name><tab><var>

· As far as possible, avoid initializations during declaration and explicitly initialize the variables.

· Within package define private variables first, then private procedures and finally public procedures.

· Use uppercase for Reserved words and lowercase for column, variable names, tables, module.

· When defining variable types, developers should use Oracle’s automatic typecasting (%TYPE, %ROWTYPE) as much as possible to handle any future type changes. The above is required only for variables used in SQL statements.

Type Definitions

The ROWTYPE, TYPE, TABLE, and RECORD -- followed by local definition variables, should be tab separated for readability. On some platforms, tab separations may result in readability problems if the code is transferred to a different platform with different editor characteristics.

If you will be using the code on multiple machines or under differing editors, use a fixed-width font and space separation. Comments should also be added to the code to ensure understanding of the use of the variables.

Example:

Header

Create or Declare

Cursors

- - Table Definitions

TYPE t_numtab IS TABLE OF NUMBER

INDEX BY BINARY_INTEGER;

tt_tab_counts ta_numtab;
tt_user_counts ta_numtab;

- - Record Definitions

TYPE rec_type IS RECORD

(userno NUMBER (2),

dname CHAR (14),

loc CHAR (23));

user_rec rec_type;

- - Rowtype Definitions

rc_table dba_tables%ROWTYPE;

- - Type Definitions

tab_nam user_constraints.table_name%TYPE;

cons_owner user_constraints.owner%TYPE;

cons_name user_constraints.constraint_name%TYPE;

- - Local Variable Definitions

vr_type VARCHAR2 (11);

vr_columns VARCHAR2 (2000);

in_counter INTEGER :=0;

in_cons_nbr INTEGER;

Cursors

Always use an explicit (instead of an implicit) cursor for all SELECT statements, even if the potential gain in performance is negligible. The benefits of doing this are:

· Better efficiency

· Better program control

· Less vulnerable to data errors - don’t need to handle NO_DATA_FOUND or TOO_MANY_ROWS exceptions

Cursor FOR Loops

The cursor FOR loop is a loop that is associated with (actually defined by) an explicit cursor or a SELECT statement incorporated directly within the loop boundary. Use the cursor FOR loop whenever (and only if) you need to fetch and process each and every record from a cursor (which is a high percentage of the time). This reduces the amount of code needed to fetch data from a cursor, and lessens the chance of introducing loop errors.

FOR record_index IN cursor_ name
LOOP

executable_statements;
END LOOP;

Example:
FOR rec_C1 IN cur_ C1
LOOP

v_source := rec_C1.source_system_code;

:

:
END LOOP;

This type of loop is not appropriate when you need to apply conditions to each fetched record to determine if you should halt execution of the loop. Instead you should use the following:

OPEN cursor_name;
LOOP

FETCH cursor_name INTO cursor_rec;

EXIT WHEN cursor_name%NOTFOUND OR condition;
END LOOP;
CLOSE cursor_name;
Example:

OPEN cur_p1;
LOOP
 FETCH cur_p1 INTO rec_ P1;
 EXIT WHEN cur_p1%NOTFOUND OR v_net_credit = 0;

:

:
END LOOP;

SELECT FOR UPDATE in Cursors

When you need to lock a set of records before changing them in a program, use the FOR UPDATE clause of the SELECT statement to perform this locking.

CURSOR cur_my IS
SELECT
column1
FROM
table
WHERE
column2 = value
FOR UPDATE

When you issue a SELECT...FOR UPDATE statement, the RDBMS automatically obtains exclusive row-level locks on all the rows identified by the SELECT statement. No one else will be able to change any of these records until you perform a ROLLBACK or a COMMIT.
Note that when you specify one or more columns in the FOR UPDATE OF clause, rows identified by the query are locked only if the select list of the query also contains at least one of those columns. Note that specifying a particular column does not limit you to updating that column.

SELECT line.customer_trx_line_id
, TO_NUMBER (line.attribute15) tax_amount
FROM ra_customer_trx_lines line
WHERE line.attribute15 IS NOT NULL
AND line.line_type = 'LINE'
AND line.request_id = v_import_req_id
FOR UPDATE OF line.attribute15;

The WHERE CURRENT OF Clause

This clause can be used with UPDATE or DELETE statements in order to easily refer to the most recently fetched row of data, and avoids the need to fetch some unique key field for use in the UPDATE or DELETE.

DECLARE

CURSOR cur_my IS

SELECT
column1

FROM
table

WHERE
column2 = value;
BEGIN

FOR rec_ my IN cur_my

LOOP

UPDATE
table

SET
column3 = value

WHERE CURRENT OF cur_my;

END LOOP;
END;
Example:

CURSOR cur_u1
IS
SELECT trx.customer_trx_id,
 TO_DATE (trx.attribute7,'YYYYMMDD') due_date
FROM ra_customer_trx trx
WHERE trx.attribute7 IS NOT NULL
AND trx.request_id = v_import_req_id
FOR UPDATE OF trx.attribute7;

FOR rec_u1 IN cur_u1

LOOP
-- Update the due date on the associated payment schedule
 UPDATE ar_payment_schedules
 SET due_date = rec_u1.due_date
 WHERE customer_trx_id = rec_u1.customer_trx_id;

-- Clear the attribute field on the invoice
UPDATE ra_customer_trx
SET attribute7 = NULL
WHERE CURRENT OF cur_u1;

END LOOP;
PL/SQL block Structure

· Use Comments to make the understanding of the code easier.

· Before starting any PL/SQL code in a block, include a block, which gives information about the code.

· Include a WHEN OTHERS exception In every PL/SQL Code block to handle abnormal conditions arising out of the processing.
/***
Module Name : <Name of Module for which this block is written >

Module Type : <Procedures, Functions, Triggers >

Author Name : < Name >

Date Created : <DD/MON/YYYY>

Synopsis : <Brief description of the script>
	Parameters :
	SL. No
	type:
	(IN,OUT,INOUT)

	
	Name
	: Datatype/size:
	

	
	Description
	
	

	
	
	
	

	Global Variables :
	SL. No
	type:
	(IN,OUT,INOUT)

	
	Name :
	: Datatype/size:
	

	
	Description
	
	

Tables Accessed : <Name The Main tables used >
	Module Called :
	<Application Functions called from the event>

	Revision History :
	
	
	

	Date
	Version
	Author
	Modifications

	<mm/dd/yy>
	<Version no.>
	<author>
	<remarks>

Comments : <Comments if Required on some parameters etc..>

***/

BEGIN

……….
PL/SQL Body

<LOOP> -- Comment to indicate start of a loop.

--Comments to briefly explain the process logic in the loop.

<END LOOP>.. – Comment to indicate the respective end of a loop

EXCEPTION

..

END; **Provide an identifier for which block this is the END of.

/***/

Spacing
A single space is placed before and after all operations and the assignment verb (=). A single space is also placed after the comma of each argument in function parameter lists.
Indenting
Tabbing is used for indenting. Statement blocks used with the following statements are indented one tab stop from the corresponding statement: CASE, DO UNTIL, DO WHILE, DO...LOOP, FOR...NEXT and multi-line IF...THEN.

CHOOSE CASE <text expression>
<TAB>CASE<expression list1>
<TAB><TAB><statement1>
.....

Indent 4 spaces for actions within an IF THEN ELSE ELSIF... END IF constructs.

· Indent 4 spaces for actions following iterative control construct (LOOP, WHILE-LOOP, and FOR-LOOP).

BEGIN
WHILE <condition> LOOP
 <statement(s)>
. . .
END LOOP;
END

· Indent 4 spaces for statements within a block or sub-block. For example:

BEGIN
 <statement(s)>
. . .
END;

· Indent 4 spaces for variable declarations.

DECLARE
 variable1 char (10);
 . . .
BEGIN

· Indent 4 spaces for exception handling code. Also indent 4 spaces for statements performed by an exception handler.
For example:

EXCEPTION
 WHEN <exception> THEN
 <statement(s)>
 WHEN <exception2> THEN

Comments
Use ‘/*....*/’ for comments that include more than a line or use -- for single line comments. Comments are placed at the beginning of scripts that are complex or difficult to follow. Comments at the beginning of functions should describe the valid values for parameters and what the possible return code. Global, shared and instance variable declarations also contain comments that identify their usage.

General PL/SQL Coding Guidelines

Comments

Within the code briefly explain processes, such as decisions and loops, if they are not obvious. For example, if a decision is based on a code value, explain what the code represents. For a loop, what is it looping through?

Use comments to explain or clarify code that is not obvious.
[RULE]

Always use upper case for keywords, especially in SQL queries. This improves performance.

If Then Statement

· Avoid deeply nested IF...THEN...ELSE, Use IF...THEN...ELSEIF...wherever possible.
Example: If Then Template

/**

* Describe the purpose of this IF statement. *

**/

· Align condition in IF is to be done as follows.

For Simple statements.

IF (<condition>) THEN

................ //** statements**//

END IF;

In case of compound conditions.

IF ((<condition1>)

AND ((<condition2>)

 OR (<condition3>)))

THEN

.................//***Statements ***///

END IF;

Select Statement

Use an alias whenever there is a need to include the table name as part of a column name (e.g., any time more than one table is referenced in the statement).
Example: Select Template

SELECT
 alias1.column,
 alias2.column
INTO
 variable_name1,
 variable_name2

FROM
 table_name1 alias1, table_name2 alias2

WHERE
 condition

AND condition;

Insert Statement

· Always specify the column_names of the table in the INSERT statements in SQL. This makes the INSERT statement coded independent of any changes to the table structure.

Example: Insert Template

INSERT INTO table_name (column name...)

VALUES (‘xxx’...);

Every insert statement should have column names specified in it before the VALUE clause.

Update Statement

Use an alias whenever there is a need to include the table name as part of a column name (e.g., any time more than one table is referenced in the statement).
Example: Update Template

UPDATE table_name alias_name
SET alias_name.column_name = 'xxx'
WHERE condition
AND condition;

[Suggestion]
Check if an UPDATE or DELETE statement has processed any rows or not using the SQL%ROWCOUNT variable. Note that SQL%ROWCOUNT gives the number of rows processed by the most recent DML statement. So if SQL%ROWCOUNT is checked immediately after an UPDATE or DELETE statement and found to have a VALUE of ZERO then one can conclude that the UPDATE or DELETE statement did not processed any rows. One can also used the CONSTRUCT if (SQL%NOTFOUND) after an UPDATE or DELETE statement to check if the statement affected any ROWS or NOT. However this does not give the number of rows affected by the statement.

Write DML statements in a consistent manner. Separate SELECT, UPDATE, DELETE, FROM, WHERE etc. clauses with new lines. When referencing multiple tables use table aliases and precede all columns with table alias, It is recommended to use short table names as alias instead of a , b etc.

If only one table is referenced then do not use a table alias.
NULL Values
Whenever a null value is part of a comparison the result will be a null value, not TRUE or FALSE. Therefore the comparison will fail. A null value is never equal to anything else, not even another null value.
· If a variable (i.e., local, global, column) can be null; the null condition should be explicitly handled when the variable is part of an IF statement. The NVL function can be used for this purpose.

 Right: IF nvl (any_column,'X') = another_column THEN

Wrong: IF any_column = another_column THEN
· When testing, if a variable is null use “is null”/”is not null” instead of ‘=’ operator.

Right: IF any_table_id is null THEN

Wrong: IF nvl (any_table_id, 0) = 0 THEN

IF nvl (any_table_id, 0) = 0 THEN is acceptable when testing if the id is 0 or null.

Sequences
· A sequence can be created on any column using the CREATE SEQUENCE construct.

· A sequence number should not be retrieved until the transaction where it is going to be used has been started. It is preferred that the NEXTVAL function (used to retrieve the next sequence number) be called from the insert or update where the sequence is to be used. It is not recommended that a sequence number be retrieved by a separate SELECT FROM dual, unless the sequence needs to be saved for use in other processing.

· Once a NEXTVAL is performed, no rollback can be done.
Right: INSERT INTO any_table (any_table_id)
VALUES (any_sequence.nextval);

Wrong: SELECT any_sequence.nextval INTO any_seq_var

FROM dual;

INSERT INTO any_table (any_table_id)
VALUES (any_seq_var);
Assignment Statements
· Use assignment statements to set values, not SELECT statements.
Right : any_value := 'Test'; :new := user; :new.create_date := sysdate;
Wrong : SELECT 'Test' INTO any_value FROM dual;
[Suggestion]

If you are selecting a VALUE like USER (Current Oracle User) or Session id (Unique Identifier maintained by Oracle or each session connected to the database) which will not change for a given session, then it would be more efficient to STORE such variables into a LOCAL PL/SQL variable outside of any LOOPS instead of accessing the USER variable every time within a LOOP that is executed several times.
Formatting single statements

Most of your code consists of individual statements, such as assignments, calls to modules, and declarations. A consistent approach to formatting and grouping such statements will improve the readability of your program as a whole.

PL/SQL uses the semicolon (;) as the logical terminator for a statement. As a result you can have more than one statement on a line and you can continue a single executable statement over more than one line.

Consider the following line:

new_id := 15; calc_total (new_id); max_dollars := 105 * sales_adj;

It is very difficult to pick out the individual statements in this line, in addition to the fact that a procedure is called in the middle of the line. By placing each statement on its own line you mirror the complexity of a program -- the simple lines look simple and the complex statements look complex -- and reinforce the top-to-bottom logic of the program:

new_id := 15;

calc_total (new_id);

max_dollars := 105 * sales_adj;

Use whitespace inside a statement

You can use all the indentation and blank lines you want to reveal the logic of a program and still end up with some very dense and unreadable code. It is also important to employ whitespace within a single line to make that one statement more comprehensible. Here are two general rules that can be employ in my code:

Always include a space between every identifier and separator in a statement.
Instead of this: WHILE (total_sales<maximum_sales AND company_type='NEW') LOOP
Write this:

WHILE (total_sales < maximum_sales AND company_type = 'NEW') LOOP

Use spaces to make module calls and their parameter lists more understandable.
Instead of this: calc_totals(company_id, LAST_DAY(end_of_year_date), total_type);

Write this:

calc_totals (company_id, LAST_DAY (end_of_year_date), total_type);

One declaration on each line

[RULE]

Each declaration should be on a separate line.

Instead of:

DECLARE

Vr_comp_type VARCHAR2 (3); dt_right_now DATE := SYSDATE; in_month_num INTEGER;

Write this:
DECLARE

vr_comp_type VARCHAR2 (3);

dt_right_now DATE : = SYSDATE;

in_month_num INTEGER;

Formatting Multi-line statements

The best way to identify continuation lines is to use indentation to logically subsume those lines under the main or first line of the statement.

Example:
generate_company_statistics (company_id, last_year_date,

rollup_type, total, average, variance, budgeted, next_year_plan);

Leave one line after each statement

[RULE]

In order to have better readability, leave one line after each statement. Here is one

Example:
IF vr_parent_cat_id <> pcms_common.vr_unassigned_cat_id

THEN

FOR cur_record IN pcms_common.arr_vr_atg_cat_id.FIRST...pcms_common.arr_vr_atg_cat_id.LAST
LOOP

BEGIN

 vr_fingerprint:= 'Inserting a record table';

 INSERT

 INTO dcs_prd_ancestors (product_id, anc_cat_id)

 VALUES (TO_CHAR (cursor_record.content_id),

 cursor_record_cat.category_id);

EXCEPTION

WHEN DUP_VAL_ON_INDEX THEN

NULL; -- This is just to bypass the unique

 -- Constraint exception

END;
END LOOP;

END IF;

Package, Procedure, Function

[Suggestion]

· All the procedures and functions should be packaged and no independent function or procedures should be created

· Use of the global variables should be minimized

· Package should consist of description and modification history, as follows:

CREATE OR REPLACE PACKAGE COM_CALCULATION_PKG AS

-- Purpose: This is a package header for

-- System.

--

-- MODIFICATION HISTORY

-- Modified By Date Version Comments

-- ------- ---------- ----------- --

-- CHOSHR 18.08.2004 Version 1.0 FLG implementation

-- ------- ---------- ----------- --
· Procedure and function should consist of description and modification history, as follows:

PROCEDURE CALCULATION_PROC (p_vr_ename IN VARCHAR2, p_nm_salary IN NUMBER) IS

/***/

-- Purpose: This procedure calculates the.
--

-- MODIFICATION HISTORY

-- Person Date Comments

-- ------- ---------- ---

-- CHOSHR 19.08.2004 Created

/***/
FUNCTION CALCULATION_FNC (p_vr_ename IN VARCHAR2, p_nm_salary IN NUMBER) RETURN NUMBER IS

/***/

-- Purpose: This function calculates the.

--

-- MODIFICATION HISTORY

-- Person Date Comments

-- ------- ---------- ---

-- CHOSHR 19.08.2004 Created

/***/
Exception Handling
Unnamed Programmer-defined Exceptions

This type of exception occurs when you need to raise an application-specific error from within the server and communicate this error back to the client application process.
Most application-specific errors will be trapped on the client side - on the other hand, since it is possible to embed many business rules directly into the database structure (using database triggers, constraints, and stored procedures), a mechanism is needed to identify application-specific errors and return information back to the client. It is not possible to name or declare an exception within a server-based program or database trigger and have the client-side tool handle that named exception.

To get round this problem, Oracle provides a special procedure to allow communication of an unnamed, yet programmer-defined, server-side exception: RAISE_APPLICATION_ERROR.

The specification for this procedure is as follows:

RAISE_APPLICATION_ERROR (in_error_number IN NUMBER, vr_error_msg IN VARCHAR2);

Where in_error_number is the error number you have assigned to this error. The vr_error_msg argument is the message that will be sent back (in SQLERRM) to the client with the error code (in SQLCODE).

For these unnamed exceptions, it is possible to associate an exception name with the specific error number by using the EXCEPTION_INIT pragma. This then allows the exception to be handled in an exception section, since only named exceptions can be handled there.

The Exception Handler Package

For the unnamed programmer-defined exceptions, it is worth placing all of their definitions, pragmas, and error messages in a single database package, called PKG_exceptions.

This package contains the following elements:

· All the unnamed, programmer-defined exceptions (error numbers -200999 through -20000) used in the application, and their associated EXCEPTION_INIT pragmas

· A procedure, raise_error, to call RAISE_APPLICATION_ERROR for these packaged exceptions, and to determine the appropriate error message

· A procedure, display_error, to display an error based on the SQLCODE and SQLERRM information.

PL/SQL Tables and Records

PL/SQL tables and records should be used instead of executing multiple SELECT statements which obtain similar results.
[Suggestion]
Instead of a SELECTING n columns into n variables (For e.g. SELECT col1, col2, col3 into l_vc_col, l_vc_col2, l_vc_col3 from table1), it would be more efficient to select the entire record into a %ROWTYPE variable. For e.g. SELECT * INTO l_rc_table1rec TABLE1%ROWTYPE;

Use Bulk Binding wherever possible, avoiding the normal cursor looping. This will improve performance at a very greater extent, since it reduces the context switching between the PL/SQL engine and the SQL engine to 1.

Standards for Optimizer Hints

· To force use of Index by a Query use an index hint in the query.
Ex: SELECT /*+ index(<table name>,index name)*/
 FROM <TABLE NAME> ;
· When alias is used with table name, then don’t use the table name in the HINT, but use the same alias name used for that table.

Example:
SELECT /*+ index (employee, emp_idx)*/ emp_id, ename, salary
FROM employee emp
WHERE emp_id = XXXXX; -- This is wrong, here the hint will not be used as an alias is used with the table name and table name is given in the hint.

SELECT /*+ index (emp, emp_idx)*/emp_id, ename
FROM employee emp
WHERE emp_id = XXXX; -- This is the Right way.

Database Object Creation Standards

Table Creation Template

In the CREATE TABLE Statement

· Name the tablespace where the table will be created.

· The INITIAL and NEXT parameters (in the STORAGE clause) are set appropriately.

· A table comment which concisely describes the purpose of the table is required.

· Other Objects that should be considered while creating the table are
· A primary key index.

· A primary key constraint.

· Check constraints.

· Foreign key constraints.

· Table privilege grants

Example:

REM
REM File: tb_emp_crt.sql
REM
REM drop table EMPLOYEE_tb

CREATE TABLE
EMPLOYEE_TB (

 EMP_ID NUMBER (15) NOT NULL,
 EMP_NAME VARCHAR2 (30) NOT NULL,

 DEPT_NAME VARCHAR2 (50) NULL,

 DESIGNATION VARCHAR2 (50) NULL,

 EMP_ADD1 VARCHAR2 (40) NULL,

 EMP_JOIN_DATE DATE NULL,

 EMP_SAL NUMBER (13) NULL,

 CREATED_BY VARCHAR2 (30) NOT NULL,

 CREATED_DATE DATE NOT NULL,

 UPDATED_BY VARCHAR2 (30) NOT NULL,

 UPDATED_DATE DATE NOT NULL)

 STORAGE (initial 20480 next 20480 pctincrease 0)

 PCTFREE 10

 TABLESPACE EMP_DTLS ;
REM Indexes

REM DROP INDEX EMPLOYEE_EMP_ID_IDX;

CREATE UNIQUE INDEX EMPLOYEE_EMP_ID _IDX
on EMPLOYEE (EMP_ID)

STORAGE (initial 20480 next 20480 pctincrease 0)

PCTFREE 5

TABLESPACE EMP_DTL1

;

REM Primary key

ALTER TABLE EMPLOYEE

ADD CONSTRAINT PK_EMPLOYEE

PRIMARY KEY (EMP_ID);
REM Check constraints

REM FOREIGN KEYS
REM Grants on table

REM Referencing foreign keys

REM Comments

Comment on table EMPLOYEE is

'This table contains valid Employees details of XYZ Organization;

Comment on column is advisable.
Tablespaces

The PCTINCREASE (in the DEFAULT STORAGE clause) is always set to Zero.

Views

· Always use the OR REPLACE option in the CREATE VIEW statement.

· Add a view comment which describes the purpose of the view is required.

Indexes
In the CREATE INDEX statement.

*The TABLESPACE is defined.

*The INITIAL and NEXT parameters (in the STORAGE clause) are set appropriately

*The PCTINCREASE (in the STORAGE clause) is always set to 0.

*Typically the default values are taken for

Example:

REM Indexes

REM DROP INDEX EMPLOYEE_ EMP_ID_IDX;

CREATE UNIQUE INDEX EMPLOYEE_EMP_ID_IDX

ON EMPLOYEE (EMP_ID)

STORAGE (initial 20480 next 20480 pctincrease 0)

PCTFREE 5

TABLESPACE EMP_DTL1 ;

PAGE
Page 4 of 29

Wipro Technologies Company Confidential

