[image: image2.jpg]WIPRO

Applying Thought

Coding Standards and Best Practices for .Net Applications – C#, VB.Net, ASP.Net

	Project Code:
	

	Project Name:
	

	Account:
	

	Vertical:
	

	Location:
	

	Customer Name:
	

	Technical Manager/ Email ID:
	

	Project Manager / Email ID:
	

	Quality Coordinator / Email ID:
	

	Customer Contact Information:
	

	
	

	
	

	
	

	
	
	
	
	

	Prepared by/Date
	
	Reviewed by/Date
	
	Approved by/Date

Revision History

	Version (x.yy)
	Date of Revision
	Description of Change
	Reason for Change
	Affected Sections
	Approved By

	1.00
	18th Mar 2004
	
	Initial release
	All
	SEPG

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

Affected Groups

	

	

	

	

Table of Contents

7Introduction

8Coding Guidelines for Microsoft .NET Applications

8Naming Guidelines

8Capitalisation Styles

8Case Sensitivity

9Abbreviations

9Class Name Guidelines

9Namespace Naming Guidelines

9Interface Naming Guidelines

10Attribute and Enumeration type Naming Guidelines

10Static Field Naming Guidelines

10Parameter Naming Guidelines

10Method and Property Naming Guidelines

10Event Naming Guidelines

11Constant Naming Conventions

11Variable Naming Conventions

12Variable Declaration

12Variable Scope Prefixes

12Comments

12Object Naming Convention

13Class Member Usage Guidelines

13Property Usage Guidelines

14Event Usage Guidelines

14Method Usage Guidelines

14Constructor Usage Guidelines

15Field Usage Guidelines

15Parameter Usage Guidelines

15Type Usage Guidelines

15Base Class Usage Guidelines

16Inheritance Usage Guidelines

16Value Usage Guidelines

17Delegate Usage Guidelines

17Attribute Usage Guidelines

17Nested Type Usage Guidelines

18Coding Guidelines for ASP .NET

19Coding Guidelines for C#

20Code Formatting and Organization Guidelines

22Indentation Guidelines

23C# files

23CSS files

23HTML/XML files

23Plain Text

23Security Guidelines

23Validating Input Parameters

23Against SQL encoding

23Against Error-pushing

24Error Handling Guidelines

24Trap Errors

24Fail Securely

24Log Errors

24Encryption Guidelines

24Passwords and Sensitive Data

24Keys, Seeds and Randomness

24User Privileges

24Build from a system of “least privilege”

25Coding Guidelines for VB .NET

26Code Formatting and Organization Guidelines

27Indentation Guidelines

27C# files

27CSS files

27HTML/XML files

28Plain Text

28Security Guidelines

28Validating Input Parameters

28Against SQL encoding

28Against Error-pushing

28Error Handling Guidelines

28Trap Errors

28Fail Securely

28Log Errors

29Encryption Guidelines

29Passwords and Sensitive Data

29Keys, Seeds and Randomness

29User Privileges

29Build from a system of “least privilege”

30Best Practices for Microsoft .NET

30Best Practices for ASP .NET

30Code Blocks: Declaring Functions and Variables

30Avoid Using default properties

30Use parentheses and the Call Keyword

30Remove code from content as much as possible

30Mixing Programming Languages

31New Page Directives

31Structured Error Handling

31Code in such a way that possibility of error is less

32Using Try...Catch to trap exceptions

32Throwing exceptions

32Using Application_Error event

33Using ErrorPage

33Using Custom error pages

34String Concatenation

34Usage of ViewState

35Manage your Session State

35Session State Storage Information

36Reuse work by Caching

36Cached Data Reference Pattern

37Use server controls only when appropriate

37Use a DataReader instead of Dataset

37Resource leak caused by not closing database connections and/or DataReaders

39Use SQL (TDS) classes for Data Access

39Use Data Binding where possible

39Use Early Binding for Better performance

40Use the new Request and Response Objects

40Use the Web.Config/Machine.Config file to store application wide data

40Authentication

41Authorization

41Use ASP.NET's Trace feature to debug instead of using Response.Write

42Use Page.IsPostBack to avoid extra round trips to the server

43Storing COM Components

43Disable Debug Mode

44How to speed up your application loading time?

44Use Properties Instead of Raw Data

44Pay Attention to Initialization Order

44Best Practices for C# .NET

48Hard Coding

48Variable Names

48Comments

48Format

49Using Finalize and Dispose

49Exception Handling

50Localization

51Accessibility

51Projects and Solutions

51Best Practices for VB .NET

51Names

52Comments

52Format

52General Usage

54Using Finalize and Dispose

55Error Handling

56Localization

57Accessibility

57Projects and Solutions

Introduction

Why to have Coding Standards and Guidelines?

· Code conventions are important to programmers for a number of reasons:

· 80% of the lifetime cost of a piece of software goes to maintenance.

· Hardly any software is maintained for its whole life by the original author.

· Code conventions improve the readability of the software, allowing engineers to understand new code more quickly and thoroughly.

· If you ship your source code as a product, you need to make sure it is as well packaged and clean as any other product you create.

· As a standard practice, every software engineer developing applications must conform to the code conventions, standards and guidelines.

This document specifies mandatory conventions that should be followed and guidelines and best practices to arrive at most optimal solutions. The project team should use its collective judgment to decide on the suitability of adopting each guidelines to its project. Any recommendations of the guidelines, if adopted, should be consistently followed by all project team members. If there is any good convention the project team would like to follow but not specified in this document, the project team can do so as long as the convention is consistently followed by all team members.

Coding Guidelines for Microsoft .NET Applications

Naming Guidelines

Capitalisation Styles

· Pascal Case: The first letter in the identifier and the first letter of each subsequent concatenated word are capitalized. E.g.- ForeColor.

· Camel Case: The first letter of an identifier is lowercase and the first letter of each subsequent concatenated word is capitalized. E.g.- foreColor

· UpperCase: All letters in the identifier are capitalized. Use this convention only for identifiers that consist of two or fewer letters. E.g.: – System.Web.UI

The following table summarizes the capitalization rules and provides examples for the different types of identifiers.

	Identifier
	Case
	Example

	Class
	Pascal
	AppDomain

	Enum type
	Pascal
	ErrorLevel

	Enum values
	Pascal
	FatalError

	Event
	Pascal
	ValueChange

	Exception class
	Pascal
	WebException

	Read-only Static field
	Pascal
	RedValue

	Interface
	Pascal
	IDisposable

	Method
	Pascal
	ToString

	Namespace
	Pascal
	System.Drawing

	Parameter
	Camel
	typeName

	Property
	Pascal
	BackColor

	Protected instance field
	Camel
	redValue

	Public instance field
	Pascal
	RedValue

Case Sensitivity

· Do not use names that require case sensitivity.

· Do not create namespaces with names that differ only by case.

· Do not create a function with parameter names that differ only by case.

· Do not create a namespace with type names that differ only by case.

· Do not create a type with property names that differ only by case.

· Do not create a type with method names that differ only by case.

Abbreviations

· Do not use abbreviations or contractions as parts of identifier names. For e.g.: use GetName and not GetNm.

· Do not use acronyms that are not generally used in the computer field.

· Where appropriate, use well-known acronyms to replace lengthy phrase names. For example, use UI for User Interface.

· When using acronyms use the Pascal case or camel case for acronyms more than two characters long. For e.g.: use HTMLControl or HtmlControl

· Avoid using class names that duplicate commonly used .NET Framework namespaces. For example, do not use any of the following names as a class name: System, Collections, Forms, or UI.

Class Name Guidelines

· Use a noun or noun phrase to name a class.

· Use Pascal case.

· Use abbreviations sparingly.

· Do not use a type prefix, such as C for class, on a class name. For example, use the class name FileStream rather than CFileStream.

· Do not use the underscore character (_).

· Occasionally, it is necessary to provide a class name that begins with the letter I, even though the class is not an interface. This is appropriate as long as I is the first letter of an entire word that is a part of the class name.

· Where appropriate, use a compound word to name a derived class. The second part of the derived class's name should be the name of the base class.

Namespace Naming Guidelines

· The general rule is to use the company name followed by the technology name and optionally the feature and design. CompanyName.TechnologyName[.Feature][.Design]

· A nested namespace should have dependency on the types in the containing namespace. For e.g – System.Web.UI and System.Web.UI.Design

· Use plural namespace name appropriate. For e.g. – System.Collections

· Do not use the same name for namespace and a class.

· A namespace name does not have to parallel an assembly name.

Interface Naming Guidelines

· Name interfaces with nouns or noun phrases, or adjectives that describe behavior.

· Use Pascal case.

· Use abbreviations sparingly.

· Prefix interface names with the letter I, to indicate that the type is an interface.

· Use similar names when you define a class/interface pair where the class is a standard implementation of the interface. The names should differ only by the letter I prefix on the interface name.

· Do not use the underscore character (_).

Attribute and Enumeration type Naming Guidelines

· Add the suffix Attribute to custom attribute classes.

· Use Pascal case for Enum types and value names.

· Use abbreviations sparingly.

· Do not use an Enum suffix on Enum type names.

· Use a singular name for most Enum types, but use a plural name for Enum types that are bit fields.

· Always add the FlagsAttribute to a bit field Enum type.

Static Field Naming Guidelines

· Use nouns, noun phrases, or abbreviations of nouns to name static fields.

· Use Pascal case.

· Use a Hungarian notation prefix on static field names.

· It is recommended to use static properties instead of public static fields whenever possible.

Parameter Naming Guidelines

· Use descriptive parameter names.

· Use camel case for parameter names.

· Use names that describe a parameter's meaning rather than names that describe a parameter's type. Use type-based parameter names sparingly and only where it is appropriate.

· Do not use reserved parameters. Reserved parameters are private parameters that might be exposed in a future version if they are needed. Instead, if more data is needed in a future version of your class library, add a new overload for a method.

· Do not prefix parameter names with Hungarian type notation.

Method and Property Naming Guidelines

· Use verbs or verb phrases to name methods.

· Use a noun or noun phrase to name properties.

· Use Pascal case.

· Do not use Hungarian notation.

· Consider creating a property with the same name as its underlying type.

Event Naming Guidelines

· Use an EventHandler suffix on event handler names.

· Specify two parameters named sender and e. The sender parameter represents the object that raised the event. The sender parameter is always of type object, even if it is possible to use a more specific type. The state associated with the event is encapsulated in an instance of an event class named e. Use an appropriate and specific event class for the e parameter type.

· Name an event argument class with the EventArgs suffix.

· Consider naming events with a verb.

· Use a gerund (the "ing" form of a verb) to create an event name that expresses the concept of pre-event, and a past-tense verb to represent post-event.

· Do not use a prefix or suffix on the event declaration on the type. For example, use Open instead of OnOpen.

· In general, you should provide a protected method called OnXxx on types with events that can be overridden in a derived class. This method should only have the event parameter e, because the sender is always the instance of the type.

Constant Naming Conventions

· Earlier versions of VBScript had no mechanism for creating user-defined constants. Constants, if used, were implemented as variables and distinguished from other variables using all uppercase characters. Multiple words were separated using the underscore (_) character. For example:

· USER_LIST_MAX

· NEW_LINE

· Now one can create true constants using Const statement.

· This convention uses a mixed-case format in which constant names have a "con" prefix.

· E.g.: conYourOwnConstant

Variable Naming Conventions

To enhance readability and consistency, use the following prefixes with descriptive names for variables
	Data Type
	Prefix
	Example

	Boolean
	bln
	blnFound

	Byte
	byt
	bytRasterData

	Date (Time)
	dtm
	dtmStart

	Double
	dbl
	dblTolerance

	Error
	err
	errOrderNum

	Integer
	int
	intQuantity

	Long
	lng
	lngDistance

	Object
	obj
	objCurrent

	Single
	sng
	sngAverage

	String
	str
	strFirstName

Variable Declaration

Dim <Space> <var1> as <Data Type>

E.g: Dim strMonth as String

Variable Scope Prefixes

As code size grows, so does the value of being able to quickly differentiate the scope of variables. A one-letter scope prefix preceding the type prefix provides this, without unduly increasing the size of variable names.

	Scope
	Prefix
	Example

	Session-level
	s
	sblnCalcInProgress

	Application-level
	a
	astrConnection

	Procedure-level
	None
	dblVelocity

Comments

Comments are necessary at the start of each section, logical block of program code and critical statements. Comments should briefly expalin the purpose of the statements that follow.

E.g: ‘This is a comment line

Object Naming Convention

The following table lists recommended conventions for objects

	Object Type
	Prefix
	Example

	3D Panel
	pnl
	pnlGroup

	Animated button
	ani
	aniMailBox

	Check box
	chk
	chkReadOnly

	Combo box, drop-down list box
	cbo
	cboEnglish

	Command button
	cmd
	cmdExit

	Common dialog
	dlg
	dlgFileOpen

	Frame
	fra
	fraLanguage

	Horizontal scroll bar
	hsb
	hsbVolume

	Image
	img
	imgIcon

	Label
	lbl
	lblHelpMessage

	Line
	lin
	linVertical

	List Box
	lst
	lstPolicyCodes

	Spin
	spn
	spnPages

	Text box
	txt
	txtLastName

	Vertical scroll bar
	vsb
	vsbRate

	Slider
	sld
	sldScale

Class Member Usage Guidelines

Property Usage Guidelines

· Decide whether the requirement is for a property or a method.

· Avoid creating a property with the same as an existing type.

· When accessing a property using the SET constructor, preserve the value of the property before changing it. This will ensure that data is not lost if the set accessor throws an exception.

· Allow properties to be set in any order. Properties should be stateless with respect to other properties. It is often the case that a particular feature of an object will not take effect until the developer specifies a particular set of properties, or until an object has a particular state. Until the object is in the correct state, the feature is not active. When the object is in the correct state, the feature automatically activates itself without requiring an explicit call.

· Components should raise property-changed events if they want to notify consumers when the component's property changes programmatically. The naming convention for a property-changed event is to add the Changed suffix to the property name, such as TextChanged.

· It is recommended that the code raise changing/changed events if the value of a property changes as a result of external forces.

· How to select between a property and a method -

· Use a property when the member is a logical data member.

· The operation is a conversion, such as Object.ToString.

· The operation is expensive enough that you want to communicate to the user that they should consider caching the result.

· Obtaining a property value using the get accessor would have an observable side effect.

· Calling the member twice in succession produces different results.

· The order of execution is important. Note that a type's properties should be able to be set and retrieved in any order.

· The member is static but returns a value that can be changed.

· The member returns an array.

· You should use a read-only property when the user cannot change the property's logical data member. Do not use write-only properties.

· Use only one indexed property per class, and make it the default-indexed property for that class.

· Do not use nondefault-indexed properties.

· Name an indexed property Item. For example, see the DataGrid.Item Property. Follow this rule, unless there is a name that is more obvious to users, such as the Chars property on the String class.

· Use an indexed property when the property's logical data member is an array.

· Do not provide an indexed property and a method that are semantically equivalent to two or more overloaded methods.

Event Usage Guidelines

· Do not use Hungarian notation.

· When you refer to events in documentation, use the phrase, "an event was raised" instead of "an event was fired" or "an event was triggered."

· In languages that support the void keyword, use a return type of void for event handlers

· Implement an event handler using the public EventHandler Click syntax. Provide an add and a remove accessor to add and remove event handlers.

· If a class raises multiple events, the compiler generates one field per event delegate instance. If the number of events is large, the storage cost of one field per delegate might not be acceptable. For those situations, the .NET Framework provides a construct called event properties that you can use together with another data structure (of your choice) to store event delegates.

· Use a protected (Protected in Visual Basic) virtual method to raise each event.

· Classes should be ready for the event handler to perform almost any operation, and in all cases the object should be left in an appropriate state after the event has been raised. Consider using a try/finally block at the point in code where the event is raised.

· Use or extend the System.ComponentModel.CancelEventArgs Class to allow the developer to control the default behavior of an object

Method Usage Guidelines

· Do not use Hungarian notation.

· By default, methods are nonvirtual. Maintain this default in situations where it is not necessary to provide virtual methods.

· Use method overloading to provide different methods that do semantically the same thing.

· Use method overloading instead of allowing default arguments. Default arguments do not version well.

· Use default values correctly. In a family of overloaded methods, the complex method should use parameter names that indicate a change from the default state assumed in the simple method.

· Use a consistent ordering and naming pattern for method parameters. It is common to provide a set of overloaded methods with an increasing number of parameters to allow the developer to specify a desired level of information.

· Use method overloading for variable numbers of parameters. Where it is appropriate to specify a variable number of parameters to a method, use the convention of declaring n methods with increasing numbers of parameters.

· If you must provide the ability to override a method, make only the most complete overload virtual and define the other operations in terms of it.

Constructor Usage Guidelines

· Provide a default private constructor if there are only static methods and properties on a class.

· Minimize the amount of work done in the constructor. Constructors should not do more than capture the constructor parameter or parameters.

· Provide a protected (Protected in Visual Basic) constructor that can be used by types in a derived class.

· It is recommended that you not provide an empty constructor for a value type struct.

· Use parameters in constructors as shortcuts for setting properties. There should be no difference in semantics between using an empty constructor followed by property set accessors, and using a constructor with multiple arguments.

· Use a consistent ordering and naming pattern for constructor parameters.

Field Usage Guidelines

· Do not use instance fields that are public or protected (Public or Protected in Visual Basic). If you avoid exposing fields directly to the developer, classes can be versioned more easily because a field cannot be changed to a property while maintaining binary compatibility. Consider providing get and set property accessors for fields instead of making them public.

· Expose a field to a derived class by using a protected property that returns the value of the field.

· It is recommended that you use read-only static fields instead of properties where the value is a global constant.

· Spell out all words used in a field name. Use abbreviations only if developers generally understand them. Do not use uppercase letters for field names.

· Do not use Hungarian notation for field names. Good names describe semantics, not type.

· Do not apply a prefix to field names or static field names. Specifically, do not apply a prefix to a field name to distinguish between static and nonstatic fields. For example, applying a g_ or s_ prefix is incorrect.

· Use public static read-only fields for predefined object instances. If there are predefined instances of an object, declare them as public static read-only fields of the object itself. Use Pascal case because the fields are public.

Parameter Usage Guidelines

· Check for valid parameter arguments. Perform argument validation for every public or protected method and property set accessor. Throw meaningful exceptions to the developer for invalid parameter arguments.

· The actual checking does not necessarily have to happen in the public or protected method itself. It could happen at a lower level in private routines. The main point is that the entire surface area that is exposed to the developer checks for valid arguments.

Type Usage Guidelines
Base Class Usage Guidelines

· Use base classes instead of interfaces whenever possible.

· From a versioning perspective, classes are more flexible than interfaces.

· Provide class customization through protected methods.

· The public interface of a base class should provide a rich set of functionality for the consumer of the class. However, users of the class often want to implement the fewest number of methods possible to provide that rich set of functionality to the consumer.

· Provide a set of nonvirtual or final public methods that call through to a single protected method that provides implementations for the methods. This method should be marked with the Impl suffix. Using this pattern is also referred to as providing a Template method.

· Many compilers will insert a public or protected constructor if you do not. Therefore, for better documentation and readability of your source code, you should explicitly define a protected constructor on all abstract classes.

· Use sealed classes if it will not be necessary to create derived classes. A class cannot be derived from a sealed class.

· Use sealed classes if there are only static methods and properties on a class.

Inheritance Usage Guidelines

· Examine your objects for parent-child relationships to identify possible superclasses from which to derive your subclasses.

· Look for multiple levels of parent-child relationships to build and Inheritance Tree.

· Write superclasses in other languages such as Visual C++ and C# and derive new Classes from these in Visual Basic, if you wish.

· Override attributes in the derived class when the inherited functionality does not fit your needs. (If you are overriding most of the inherited functions, then this probably is not a good candidate for inheritance.)

· When modeling, decide which superclass functions can be overridden and which must be overridden, and declare these as Overridable or Must Override
Value Usage Guidelines

· Use struct for types that meet the following criteria:Act like primitive types.
· Have an instance size under 16 bytes.

· Are immutable.

· Value semantics are desirable.

· When using a struct, do not provide a default constructor. The runtime will insert a constructor that initializes all the values to a zero state.

· Use an enum to strongly type parameters, properties, and return types. Always define enumerated values using an enum if they are used in a parameter or property.

· Use the System.FlagsAttribute Class to create custom attribute for an enum if a bitwise OR operation is to be performed on the numeric values.

· Use an enum with the flags attribute only if the value can be completely expressed as a set of bit flags. Do not use an enum for open sets (such as the operating system version).

· Do not assume that enum arguments will be in the defined range. Perform argument validation

· Use an enum instead of static final constants.

· Use type Int32 as the underlying type of an enum unless either of the following is true:

· The enum represents flags and there are currently more than 32 flags, or the enum might grow to many flags in the future.

· The type needs to be different from int for backward compatibility.

· Do not use a nonintegral enum type. Use only Byte, Int16, Int32, or Int64.

· Do not define methods, properties, or events on an enum.

· Do not use an Enum suffix on enum types.

Delegate Usage Guidelines

· Use the appropriate event design pattern for events even if the event is not user interface-related.

· Callback functions are passed to a method so that user code can be called multiple times during execution to provide customization. Passing a Compare callback function to a sort routine is a classic example of using a callback function.

· Name end callback functions with the suffix Callback.

· Use delegates for Events and multicasting.

· Use the Delegate to point a delegated object to any subroutine that has a matching input parameter.

· Group Delegate objects together using the System.Delegate.Combine method.

· Use more that one Combine statement to add more Delegates to a grouping.

· Use the Addressof statement to change the function pointer of an object dynamically in your code.

Attribute Usage Guidelines

· Add the Attribute suffix to custom attribute classes.

· Specify AttributeUsage on your attributes to define their usage precisely.

· Seal attribute classes whenever possible, so that classes cannot be derived from them.

· Use positional arguments for required parameters.

· Use named arguments for optional parameters.

· Do not name a parameter with both named and positional arguments.

· Provide a read-only property with the same name as each positional argument, but change the case to differentiate between them.

· Provide a read/write property with the same name as each named argument, but change the case to differentiate between them.

Nested Type Usage Guidelines

· Use Nested types when –

· The nested type logically belongs to the containing type.

· The nested type is not used often, or at least not directly.

· Do not use Nested types when –

· The type is used in many different methods in different classes.

· The type is commonly used in different APIs.

Coding Guidelines for ASP .NET

· Disable session when not using it. This can be done at the application level in the “machine.config” file or at a page level.

· The in-proc model of session management is the fastest of the three options. SQL Server option has the highest performance hit.

· Minimize the amount and complexity of data stored in a session state. The larger and more complex the data is, the cost of serializing/deserializing of the data is higher (for SQL Server and State server options)

· Use Server.Transfer for redirecting between pages in the same application. This will avoid unnecessary client-side redirection.

· Avoid unnecessary round-trips to the server – Code like validating user input can be handled at the client side itself.

· Use Page.IsPostback to avoid unnecessary processing on a round trip.

· Use server controls in appropriate circumstances. Even though are they are very easy to implement, they are expensive because they are server resources. Sometimes, it is easier to use simple rendering or data-binding.

· Save server control view state only when necessary.

· Buffering is on by default. Turning it off will slow down the performance. Don’t code for string buffering – Response.Write will automatically buffer any responses without the need for the user to do it. Use multiple Response.Writes rather than create strings via concatenation, especially if concatenating long strings.

· Don’t rely on exceptions in the code. Exceptions reduce performance. Do not catch the exception itself before handling the condition.

// Consider changing this...

try { result = 100 / num;}

catch (Exception e) { result = 0;}

// to this...

if (num != 0)

result = 100 / num;

else

result = 0;

· Use early binding in VB.NET and Jscript code. Enable Option Strict in the page directive to ensure that the type-safe programming is maintained.

· Port call-intensive COM components to managed code. While doing Interop try avoiding lot of calls. The cost of marshalling the data ranges from relatively cheap (i.e. int, bool) to more expensive (i.e. strings). Strings, a common type of data exchanged for web applications, can be expensive because all strings in the CLR are in Unicode, but COM or native methods may require other types of encoding (i.e. ASCII).

· Release the COM objects or native resources as soon as the usage is over. This will allow other requests to utilize them, as well as reducing performance issues, such as having the GC release them at a later point.

· Use SQL server stored procedures for data access.

· Use the SQLDataReader class for a fast forward-only data cursor.

· Datagrid is a quick way of displaying data but it slows down the application. The other alternative, which is faster is rendering the data for simple cases. But this difficult to maintain. A middle of the road solution could be a repeater control, which is light, efficient, customizable and programmable.

· Cache data and page output whenever possible.

· Disable debug mode before deploying the application.

· For applications that rely extensively one external resource, consider enabling web gardening on multiprocessor computers. The ASP.NET process model helps enable scalability by distributing work to several processes, one on each CPU. If the application is using a slow database server or calls COM objects that access external resources, web gardening could be a solution.

· Enumerating into collections sometimes is more expensive than index access in a loop. This is because the CLR can sometimes optimize array indexes and bounds checks away in loops, but can’t detect them in foreach type of code.

· JScript .NET allows methods within methods – to implement these in the CLR required a more expensive mechanism which can be much slower, so avoid them by moving inner methods to be just regular methods of the page.

· Do a “pre-batch” compilation. To achieve this, request a page from the site.

· Avoid making changes to pages or assemblies that are there in the bin directory of the application. A changed page will only recompile the page. Any change to the bin directory will result in recompile of the entire application.

· The config file is configured to enable the widest set of features. For a performance boost it is better to tune it to the requirements. Some key points here are –

· Encoding – Request/Response – The default is UTF-8 encoding. If the site is completely ASCII, change the option to ASCII encoder.

· Session State – By default is ON. If session state is not maintained then the value should be changed to OFF.

· ViewState – Default is ON. Turn it off if not being used. If ViewState is being used there are different levels of security that need to considered which can impact the performance of the application.

· AutoEventWireup - Turning off AutoEventWireup means that the page will not try and match up method names to events and hook them up (i.e. Page_Load, etc). Instead, if the application writer wishes to receive them, they need to override the methods in the base class (i.e. override OnLoad for the page load event instead of using a Page_Load method). By doing so, the page will get a slight performance boost by not having to do the extra work itself, but leaving it to the page author.

· For efficient debugging Use ASP.NET trace feature to debug instead of Response.Write.

· Do not use application variables to store sensitive information. Due to the tracing facility available the sensitive information can be encroached upon. The other option is to store this information in the web.config file and turn the tracing option off for the file. If there are multiple sites that are accessing the same database then it would be a good idea to store the information in the machine.config file.

Coding Guidelines for C#

· Declare variables at the lowest scope possible.

· Don’t write monolithic methods (50 lines or more), consider refactoring them in smaller, more understandable, functions.

· Try to keep your method and implementation code to 10 lines or less.

· Declare symbols at the most restrictive visibility possible, start with private, then protected and then public, as needed.

· Whenever possible, avoid using goto, break or continue to exit loops specially when dealing with large methods.

· Do not commit commented code to the source code repository. Remove all commented code if is not necessary. For example, do not commit the following code:

public int GetData()

{

//int Data;

//string userName;

//Data = ExecuteQuery(userName);

int DataCount;

string userCookie;

DataCount = ObtainResearch(userCookie);

}

 Do not use code comments like

// John commented this line (10/12/2003)

// DataCount = ObtainResearch(userCookie);

If the line is not needed remove it and rely on the source code tracking features.
· Always put a comment explaining your changes when committing your code to the source code repository.

· Avoid extended / overly-long lines by adding appropriate breaks

· Avoid multiple returns per method (i.e., all things being equal, prefer one to many)

· Avoid overly nested control structures or inheritance

· Test booleans using “if (boolValue)” rather than “if (boolValue == true)”

· Use “using {…}” to implicitly call an object’s Dispose() method in lieu of explicitly calling it via “try {…} finally {…}” when no other cleanup is needed

· Use/override the Object.Clone() method in lieu of implementing a copy constructor

· Don’t unnecessarily refer to member data or methods using “this.”

· Use const/readonly modifiers for data, methods and classes whenever possible.

· Use NDoc for class-level comments, method comments are optional for application specific classes but strongly recommended for highly reused classes like the ones that are part of an SDK assemblies and base classes.

· Add descriptive comments only when further information is needed, otherwise, rely on writing self-documenting code and using meaningful names.

· Generally keep your class file size not exceeding 2000 LOC.

Code Formatting and Organization Guidelines

General

· Put only one class per file. Do not group related classes in the same .cs file. This applies to enums, and interfaces. The only exception would be classes that are declared within the body of an existing class.

· Declare all member variables before methods:

public class ResearchDataModel : ModelBase

{

private DataTable _Data;

private int _maximumData = 5;

private DateTime _startDate;

private DateTime _endDate;

public ResearchDataModel(Hashtable table)

{

// Implmentation code goes here.

}

}

· Try to group data members and methods by visibility.

· Don’t declare field variables for public access in classes.

· For example, don’t declare a public field:

public DateTime StartDate;

· use a member variable and a property for instead

private DateTime _startDate;

public DateTime StartDate

{

get {return _startDate;}

set {_startDate = value;}

}

· Optionally, declare public members in structs, using “PascalCase”

· Write only one statement per line, with two exceptions:

· Simple property declarations

public int Counter

{

get {return _counter;}

set {_counter = value;}

}

· Single-statement condition or loop implementations, where the implementation must be dropped to the next line (i.e., braces optional)

if (someExpression)

SomeMethod();

· Do not overuse spaces.

Examples:

	Instead of
	Use

	If (tableUI.Rows.Count == 0)

{

 for (int j=0 ; j<maxRows ; j++)

 {

 // Implmentation code goes here.
 }

}

	If (tableUI.Rows.Count == 0)

{

 for (int j = 0; j < maxRows; j++)

 {

 // Implmentation code goes here.
 }

}

	public int Factorize (int number)

{

 // Implmentation code goes here.
}
	public int Factorize(int number)

{

 // Implmentation code goes here.
}

	if (!boolValue)

if (value>5)
	if (!boolValue)

if (value > 5)

· Use a single space before the opening parenthesis of statements like if, for, foreach, etc.

if (propertyValue == "Some String")

{

// Implmentation code goes here.

}

for (int i = 0; i < 10; i++)

{

// Implmentation code goes here.

}

· Do not use spaces before the opening parenthesis of a method call.

· Use a single space after “,”, “;” and “:”. For example:

ObtainResearch(userCookie, startDate, endDate)

for (int i = 0; i < 10; i++)

x != 0.0 ? Math.Sin(x)/x : 1.0;

· Do not overuse line breaks. Use only one line break to separate methods and significant sections of a method.

· Declare System usings first, other 3rd party library usings next, and project usings last. Order each group in alphabetical order

Example:

using System;

using System.Xml;

using Microsoft.Web.Services;

using Microsoft.Web.Services.Security;

using Thomson.Financial.Platform.Instrumentation;

· Align braces (i.e., no open brace at the end of a line), for example, use:

for (int i = 0; i < 10; i++)

{

// Implmentation code goes here.

}

instead of

for (int i = 0; i < 10; i++) {

// Implmentation code goes here.

}

· Declare variables as close as possible to their intended usage

Indentation Guidelines

Indentation guidelines differ depending on the file type, customize your Visual Studio IDE for each file type.

Go under Tools->Options->Text Editor and select the Tabs branch under the appropriate file type:

C# files

Use tabs, Tab size = 4, Indent Size = 4 (This is the IDE default)

CSS files

Use tabs, Tab size = 4, Indent Size = 4 (This is the IDE default)

HTML/XML files

Use tabs, Tab size = 2, Indent Size = 2 (The IDE default needs to be changed here, the default is Tabs, Tabs size = 4, Indent Size = 4). This change is to accommodate the formatting with config files that are XML files and use two spaces by default.

This setting also affects JS Files.

Plain Text

Use tabs, Tab size = 4, Indent Size = 4 (This is the IDE default)

Security Guidelines

Validating Input Parameters

As a rule of thumb, limit acceptable input to only what is necessary.

Against SQL encoding

If a parameter is going to be used in a SQL statement, all possible characters and syntax that could be used to “malform” the intended SQL should be protected against. For example, if a script expected a username & password for the following SQL “Select * from users where username=’” + param1 + “’ and password = ‘” + param2 + “’ ” and the user causes param1 to be “something’ or 1=1 - -“ this could cause the entire table to be displayed.

Against Error-pushing

If any character could cause a script to error, it must be protected against, either by returning to the user for valid input or stripping the offending character(s).

Against Cross-Side Scripting
A user should not be able to enter any kind of client-side Script (Javascript, VBScript) that could then be executed from a subsequent page.

* this is especially important in the context of a user causing some script to be saved to the database then executed by another user or admin. In which case sensitive data could be compromised.

Error Handling Guidelines

Trap Errors

Every block of code should safely trap any possible errors such that subsequent code is able to run. This doesn’t mean that every single method needs to have error trapping, you need to use judgement in order to determine where to place in the call stack a try/catch statement and how will the application recover gracefully from an exception.
Fail Securely

Clients should be informed when an error impacts their experience or expectations. However, no information should be displayed to the user that may reveal any business logic – including line numbers, function names, etc. The safe standard “An error has occurred – please contact customer support”.

Log Errors

Logs should be kept of errors that may be thrown. The logs should be sufficiently verbose that support and/or developers may diagnose the source of the error.

Encryption Guidelines

Passwords and Sensitive Data

Passwords and any information (internal or other) that is displayed in any fashion to the user (either visibly or hidden in source code) must be encrypted.

Keys, Seeds and Randomness

Proper procedures should be followed for any given encryption class or component. Refer to a class/component’s documentation to ensure that you properly randomize and allow any seed properties to increment.

User Privileges

Build from a system of “least privilege”

Coding Guidelines for VB .NET

· Declare variables at the lowest scope possible.

· Don’t write monolithic methods (50 lines or more), consider refactoring them in smaller, more understandable, functions.

· Try to keep your method and implementation code to 10 lines or less.

· Declare symbols at the most restrictive visibility possible, start with private, then protected and then public, as needed.

· Whenever possible, avoid using goto, break or continue to exit loops specially when dealing with large methods.

· Do not commit commented code to the source code repository. Remove all commented code if is not necessary. For example, do not commit the following code:

 Public Function GetData() As Integer

 'Integer dataCount

 'String userName

 Dim dataCount As Integer

 Dim userName As String

 dataCount = ObtainResearch(userName)

 End Function

· Do not use code comments like

' Jhon commented this code on 11/11/2003
dataCount = ObtainResearch(userName)

If above line is not needed remove it and rely on the source code tracking features.

· Always put a comment explaining your changes when committing your code to the source code repository.

· Avoid extended / overly-long lines by adding appropriate breaks

· Avoid overly nested control structures or inheritance

· Test booleans using “If boolValue” rather than “If boolValue = True”

· Use “using” to implicitly call an object’s Dispose() method in lieu of explicitly calling it via “Try Finally” when no other cleanup is needed

· Use/override the Object.Clone() method in lieu of implementing a copy constructor

· Don’t unnecessarily refer to member data or methods using “Me.”

· Use const/readonly modifiers for data, methods and classes whenever possible.

· Use NDoc for class-level comments, method comments are optional for application specific classes but strongly recommended for highly reused classes like the ones that are part of an SDK assemblies and base classes.

· Add descriptive comments only when further information is needed, otherwise, rely on writing self-documenting code and using meaningful names.

· Generally keep your class file size not exceeding 2000 LOC.

Code Formatting and Organization Guidelines

General

· Put only one class per file. Do not group related classes in the same .cs file. This applies to enums, and interfaces. The only exception would be classes that are declared within the body of an existing class.

· Declare all member variables before methods:

Public Class ResearchDataModel Inherits ModelBase

Private DtTime As DateTime

Private iNumber As Integer

Public Sub ResearchDataModel(Hashtable table)

// Implmentation code goes here.

End Sub
End Class
· Try to group data members and methods by visibility.

· Don’t declare field variables for public access in classes.

For example, don’t declare a public field:

Public StartDate As DateTime
use a member variable and a property for instead

Private stDate As DateTime

Public Property StartDate()As DateTime

Get

 Return stDate

End Get

Set

 stDate = value

End Set

End Property
· Optionally, declare public members in structs, using “PascalCase”

· Write only one statement per line

· Do not overuse spaces.

Examples:

	Instead of
	Use

	If tableUI.Rows.Count = 0

 For j=0 To 5

 // Implmentation code goes here.
 Next

End If

	If tableUI.Rows.Count = 0

 For j = 0 To 5

 // Implmentation code goes here.
 Next

End If

	Public Function Factorize As Integer
 Dim intCount As Integer

 intCount = 0

 // Implmentation code goes here.
End Function
	Public Function Factorize As Integer
 Dim intCount As Integer

 intCount = 0

 // Implmentation code goes here.
End Function

· Use a single space before the opening parenthesis of statements like if, for, foreach, etc.

· Use a single space after “,”, “;” and “:”. For example:

· Do not overuse line breaks. Use only one line break to separate methods and significant sections of a method.

· Declare System imports first, other 3rd party library imports next, and project imports last. Order each group in alphabetical order

Example:

Imports System

Imports System.Xml

Imports Microsoft.Web.Services

Imports Microsoft.Web.Services.Security

Imports Thomson.Financial.Platform.Instrumentation

· Declare variables as close as possible to their intended usage

Indentation Guidelines

Indentation guidelines differ depending on the file type, customize your Visual Studio IDE for each file type.

Go under Tools->Options->Text Editor and select the Tabs branch under the appropriate file type:

C# files

Use tabs, Tab size = 4, Indent Size = 4 (This is the IDE default)

CSS files

Use tabs, Tab size = 4, Indent Size = 4 (This is the IDE default)

HTML/XML files

Use tabs, Tab size = 2, Indent Size = 2 (The IDE default needs to be changed here, the default is Tabs, Tabs size = 4, Indent Size = 4). This change is to accommodate the formatting with config files that are XML files and use two spaces by default.

This setting also affects JS Files.

Plain Text

Use tabs, Tab size = 4, Indent Size = 4 (This is the IDE default)

Security Guidelines

Validating Input Parameters

As a rule of thumb, limit acceptable input to only what is necessary.

Against SQL encoding

If a parameter is going to be used in a SQL statement, all possible characters and syntax that could be used to “malform” the intended SQL should be protected against. For example, if a script expected a username & password for the following SQL “Select * from users where username=’” + param1 + “’ and password = ‘” + param2 + “’ ” and the user causes param1 to be “something’ or 1=1 - -“ this could cause the entire table to be displayed.

Against Error-pushing

If any character could cause a script to error, it must be protected against, either by returning to the user for valid input or stripping the offending character(s).

Against Cross-Side Scripting
A user should not be able to enter any kind of client-side Script (Javascript, VBScript) that could then be executed from a subsequent page.

* this is especially important in the context of a user causing some script to be saved to the database then executed by another user or admin. In which case sensitive data could be compromised.

Error Handling Guidelines

Trap Errors

Every block of code should safely trap any possible errors such that subsequent code is able to run. This doesn’t mean that every single method needs to have error trapping, you need to use judgement in order to determine where to place in the call stack a try/catch statement and how will the application recover gracefully from an exception.

Fail Securely

Clients should be informed when an error impacts their experience or expectations. However, no information should be displayed to the user that may reveal any business logic – including line numbers, function names, etc. The safe standard “An error has occurred – please contact customer support”.

Log Errors

Logs should be kept of errors that may be thrown. The logs should be sufficiently verbose that support and/or developers may diagnose the source of the error.

Encryption Guidelines

Passwords and Sensitive Data

Passwords and any information (internal or other) that is displayed in any fashion to the user (either visibly or hidden in source code) must be encrypted.

Keys, Seeds and Randomness

Proper procedures should be followed for any given encryption class or component. Refer to a class/component’s documentation to ensure that you properly randomize and allow any seed properties to increment.

User Privileges

Build from a system of “least privilege”

User accounts should have explicit access to only those services/areas required for the application to function. All other access should be denied.

Refrain from granting access to everyone if a specific feature doesn’t work, try to understand the security model you are dealing with. Enable permissions one by one until you find the minimum set of permissions required by the application to work properly.
Best Practices for Microsoft .NET

Best Practices for ASP .NET

The designers of Microsoft® ASP.NET have done an excellent job in preserving backward compatibility with ASP applications, you need to be aware of a few best practices as follows:

Code Blocks: Declaring Functions and Variables

In ASP, you can declare subroutines and global variables in between your code delimiters.

<%

 Dim X

 Dim str

 Sub MySub()

 Response.Write "This is a string."

 End Sub

%>

In ASP.NET, this is no longer allowed. You must instead declare all of your functions and variables inside a <script> block.

<script language = "vb" runat = "server">

 Dim str As String

 Dim x, y As Integer

 Function Add(I As Integer, J As Integer) As Integer

 Return (I + J)

 End Function

</script>

Avoid Using default properties

The default properties are no longer allowed. Accessing your properties explicitly isn't really that hard to do anyway. It will make your code more readable and also save you time in porting in the future.

Use parentheses and the Call Keyword

Use parentheses and Call statements wherever possible, as detailed earlier in this article. In ASP.NET you will be forced to use parentheses. Using the Call statement today will help you add a bit of discipline that will better prepare you for the future.

Remove code from content as much as possible

You should separate your code from HTML content. Clean up functions that mix code and script throughout a function body. Doing so puts you in a much better position to leverage code-behind as this is the ideal model under ASP.NET anyway.

Mixing Programming Languages

In ASP.NET, you can use any Common Language Runtime-compliant language. C#, Visual Basic .NET, and JScript are the current languages provided by Microsoft. Note that the language is Visual Basic .NET instead of VBScript. This is because VBScript does not exist in the .NET platform. It has been fully subsumed by Visual Basic .NET.

Although you are free to pick any of these languages, it is important to note that you cannot mix languages on the same page as you could do in ASP. It is certainly possible to have Page1.aspx of your application contain C# code while Page2.aspx of the same application contains Visual Basic .NET code. You just cannot mix them together in a single page.

New Page Directives

In ASP.NET, you are now required to place the Language directive with a Page directive, as follows:

<%@ Page Language="vb" CodeBehind="test.aspx.vb"%>

<%@ OutputCache Duration="60" VaryByParam="none" %>

You can have as many lines of directives as you need. Directives may be located anywhere in your .apsx file but standard practice is to place them at the beginning of the file.

Structured Error Handling

Errors in web applications can be broadly classified into two categories system errors and business logic errors. The first type of errors might be because of network crashes, database crashes or server down-times. The second type of errors is related to particular business rules. These errors vary based on application under consideration.

All of these errors call for a robust and user-friendly error handling techniques for your applications.

The various options available for us for handling errors in asp.net are:

· Code in such a way that possibility of error is less

· Trapping errors as and when they occur

· Throw errors wherever appropriate to assist unified error handling

· Handle errors via Application_Error event in global.asax

· Provide custom error pages for predefined IIS errors

· Provide custom error pages for business errors

Let us dissect each of the options in detail.

Code in such a way that possibility of error is less

As the saying goes - prevention is better than cure, you should try to avoid error conditions as far as possible. Consider an example suppose you want to perform some mathematical calculation of two numbers supplied by the user. You know that if you divide a number by 0 an error is going to occur. You can avoid such errors with a simple if condition. This will not only prevent further errors but also reduce burden from your error handling system.

Using Try...Catch to trap exceptions

As stated previously, you should be prepared to handle unexpected conditions like network failures, database crashes and the like. Languages like C# and VB.NET provide a special construct Try…Catch for trapping such errors. In .NET terminology errors are referred as exceptions indicating that some thing abnormal has happened. Following code fragment shows how to use this construct:

Try

Dim MyObject As Object

MyObject.CallMethod()
Response.Write("Call To Object Succeeded")

Catch NRE As NullReferenceException

Response.Write("Null Reference Exception
")

Catch DefaultExcep As Exception

Response.Write("Error Occured, Unknown Orgin")

Finally

Response.Write("Caught Exception")

End Try

Here, we have placed the code that might throw an exception into the try block. If any exception occurs here the control will shift to the catch block. Catch block allows you to filter your exception. In above example we have used general Exception class however, you can test for a specific exception as well. The finally block is executed in normal as well as abnormal conditions. This block is typically used to perform clean up task of the method like closing database connection or re-initialize certain variables.

Throwing exceptions

While developing complex systems you may develop your own exception classes. Custom exception classes are nothing but classes derived from System.Exception or System.ApplicationException classes. Why one will want to throw an exception? One reason is to bring the uniformity in the error handling techniques. Also, this way you can identify business error conditions in code itself rather than relaying on some database stored error codes. You will also be able to provide much detailed and user-friendly information to the users. You can throw exceptions using throw keyword.

The following example shows how:

If some_condition

throw new Exception("Custom error");

End if

However, keep in mind that throwing an exception is an expensive task. You should use your judgment while using this technique.

Using Application_Error event

Let us now begin with error handling techniques specific to ASP.NET. The global.asax file contains Application_Error event that gets fired every time an unhandled exception occurs in the web application. This is the ideal place to log your unhandled errors. The following code shows sample usage of this event:

Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)

Response.Write("Unexpected error occured !
" & Server.GetLastError().Message);

Response.End();

End Sub

The Server.GetLastError() returns an Exception class that gives details about the exception. Note that this event will be fired only for unhandled exceptions i.e. exceptions not trapped using Trycatch, error page, custom error page or any other techniques.

Using ErrorPage

In case of unhandled errors you will get default ASP.NET error page giving information about the error. You will agree that this page is far from being user friendly. You can provide much better user experience by the use of custom error pages. The Page class has a property called as ErrorPage that can contain url of a HTML/ASPX page that will be displayed if any unhandled exception occurs in your code.

Mywebform.ErrorPage="errpage.aspx"

You can set this property either via properties windows of VS.NET or via code. Note that only unhandled exceptions from the page will cause the error page to be displayed.

In order to use the error page, follow these steps:

In the web.config file, turn on the customErrors mode as shown below:

<customErrors mode="On" />

To the web forms in the project, set its errorPage property to errpage.aspx. Add a web form named errpage.aspx to the project

In the web forms there will be code like the following that can throw an exception.

conn.ConnectionString = "user id=xyz;password=;xyz,initial catalog=pubs;"

conn.Open()

comm.Connection = conn

comm.CommandType = CommandType.Text

comm.CommandText = "select au_id,au_lname,au_fname from authors"

Return comm.ExecuteReader(CommandBehavior.CloseConnection)

Now, run the application and enter some invalid value for database connection string. You will find that the errpage.aspx is shown.

Note how the page causing error is passed to the error page via query string.

Using Custom error pages

There are some errors that are not in control of developers. Page not found, internal server errors are some examples. Traditionally developers or administrators used to put custom error pages for such errors using IIS snap-in. ASP.NET allows you to do this via web.config.

This means that you can customize error pages without going to IIS snap-in and also change them easily in future. Setting custom error pages requires you to modify <customErrors> section of web.config file.

Following markup shows one such example:

<customErrors mode="On" defaultRedirect="errpage.aspx">

<error statusCode="404" redirect="filenotfound.aspx" />

</customErrors>

We saw various error handling techniques that can be used in ASP.NET. The techniques like Trycatch are language features of languages like C# and VB.NET and can be used in general programming also. The web.config plays important role in configuring the custom error pages for your application.

String Concatenation

The good news is that regardless of what technique you use to concatenate strings in ASP.NET it will be faster than it was in classic ASP. That said there are two common ways that strings are usually concatenated using the .NET Framework/VB.NET. One is to use the & character to concatenate two strings like so:

Dim myOutputString As String = "My name is"

Dim myInputString As String = " Alex"

myOutputString = myOutputString & myInputString

Response.Write(myoutputString)

The second technique makes use of the StringBuilder class. The StringBuilder class will look foreign to those of you who are new to ASP.NET. To concatenate strings using the StringBuilder class you would use code such as this:

Dim myStringBuilder As New StringBuilder("My name is")

Dim myInputString As String = " Alex"

myStringBuilder.Append(myInputString")

Response.Write(myStringBuilder.ToString()

Now, you will probably not notice a performance difference when concatenating less than five times (as concatenation is often done in a loop of some kind). In fact, you may see the & technique of concatenation perform a little better than the StringBuilder class when performing fewer than five concatenations. The "best practice" tip to take away from this section though is that the StringBuilder class will majorly outperform the & character when doing five plus concatenations.

Usage of ViewState

Depending on the size of the viewstate, transmitting it across a network can entail a performance hit. You can check the viewstate for any control, or the complete page, by turning on tracing using a Page directive:

<%@Page Trace=”true” … %>

To disable viewstate maintenance for a page, use the following Page directive:

<%@Page EnableViewState=”false” … %>

To disable viewstate maintenance for a single control, use the EnableViewState property:

<ASP: DataGrid EnableViewState=”false” … runat=”server”/>

To disable viewstate maintenance for an entire application, change the setting in web.config:

<Pages enableviewstate=”false” …/>

Manage your Session State

You should only use sessions when they are actually required for the application. Turn them off in any pages that don’t require access to them. Alternatively, use read-only session state where you don’t need to update the values.

To disable session state maintenance for a page, use the Page directive:

<%@Page EnableSessionState=”false” …%>

To disable session state maintenance for an entire application, change the setting in Web.Config:

<sessionState mode=”off” />

<pages enableSessionState=”false” … />

To specify read-only session state maintenance for a page, use the Page directive:

<%@Page EnableSessionState=”ReadOnly” … %>

To specify read-only session state maintenance for an entire application, change the setting in Web.Config:

<pages enableSessionState=”ReadOnly” … />

You configure your state management options in the <sessionState> section of your web.config file as follows:

<sessionState mode="Inproc" stateConnectionString="tcpip=127.0.0.1:42424" sqlConnectionString="data source=127.0.0.1;user id=sa;password=" cookieless="false" timeout="20"/>

The mode attribute specifies where you would like to store your state information. Your options are Inproc, StateServer, SqlServer, or Off.

Session State Storage Information
	Option
	Description

	Inproc
	Session state is stored locally on this server (ASP style).

	StateServer
	Session state is stored in a state service process located remotely or potentially locally.

	SqlServer
	Session state is stored in a SQL Server database.

	Off
	Session state is disabled.

StateConnectionString and sqlConnectionString obviously come into factor if you use one of these other options. You can only use one storage option per application.

Where possible, use the default in-process session management. The out-of-process state service can produce a performance hot of 20 percent over the in-process session manager, and the remote SQL server state management session adds around another 50 percent performance hot over out-of-process session state management – use it only for web form.

Reuse work by Caching

ASP.NET allows you to cache the entire response content for dynamic pages on HTTP 1.1 capable mechanisms, including browsers, proxy servers, and the origin Web server where your application resides. This provides a powerful way for you to increase the performance of your Web applications. Called output caching, it allows subsequent requests for a particular page to be satisfied from the cache so the code that initially creates the page does not have to be run upon subsequent requests. Using this technique to cache your site's most frequently accessed pages can increase your Web server's throughput, commonly measured in requests per second, substantially.

You can use the caching feature by including the @ OutputCache directive in the .aspx file for the page. The @ OutputCache directive can meet nearly all the common needs you may have when you want to cache a page's output. The following directive, when included in an .aspx file, sets an expiration of 60 seconds for the cached output of a dynamically generated page.

<%@ OutputCache Duration="60" VaryByParam="None" %>

As a reference to the process of implementation of OutputCache , you can use following pattern.

Cached Data Reference Pattern

Whenever an attempt is made to access data from the cache, it should be with the assumption that the data might not be there any more. Thus, the following pattern should be universally applied to your access of cached data. In this case, we're going to assume the object that has been cached is a DataTable.

public DataTable GetCustomers(bool BypassCache)

{

 string cacheKey = "CustomersDataTable";

 object cacheItem = Cache[cacheKey] as DataTable;

 if((BypassCache) || (cacheItem == null))

 {

 cacheItem = GetCustomersFromDataSource(); //Your business logic goes Here

 Cache.Insert(cacheKey, cacheItem, null,

 DateTime.Now.AddSeconds(GetCacheSecondsFromConfig(cacheKey),

 TimeSpan.Zero);

 }

 return (DataTable)cacheItem;

}

CAUTION When you use the @ OutputCache directive, the Duration and VaryByParam attributes are required. If you do not include them, a parser error occurs when the page is first requested. If you do not want to use the functionality that the VaryByParam attribute provides, you must set its value to none. You can refer to the helper class which will handle the caching mechanism and allow cached data to be accessed with one or two lines of code. Download Cache Demo from Microsoft
Use server controls only when appropriate

If you need to access HTML element’s properties, methods or events in server-side code, you have to declare it as server-side code. For example, following situations do not require a server control.

· When the element is only used to run some client-side script, for example, a button that opens a new browser window, or that interacts with a client-side ActiveX control or java applet, or that calculates some value for display in the page using DHTML or an alert dialog

· When the element is a hyperlink that opens a different page or URL and there is no need to process the values for the hyperlink on the server.

· Any other times when access to the element’s properties, methods or events in server-side code is not required.

A page containing server controls will take a performance hit compared to one that does not use server controls, perhaps as much as 30 percent. However, using code to set or access the element content directly will also cause a performance hit, so if you do need to access the element programmatically (even just to set the text or value), use a server control for that element.

Use a DataReader instead of Dataset

The only times that a DataSet muse be used in preference to a DataReader are:

· When the data will be remoted (disconnected) to the client or a remote application or component – for example, when using a Web Service that returns a DataSet.

· When more than one set of rows must be stored (and optionally the relationships between them).

The DataReader can be used as the source for data binding controls if required.

Resource leak caused by not closing database connections and/or DataReaders

In VB 6 and VBScript, it was a best practice to always close objects (especially precious resources like connections, recordsets, etc.) and to always set them equal to nothing. Well, that is still partially true. We still need to close connection objects when we are done with the database connection. We also need to remember to close our DataReader. Here are a couple examples that demonstrate how the database connection and/or DataReader object should be closed.

Here we are using the CommandBehavior.CloseConnection enumeration which will close the connection as soon as all of the data as been streamed into the SqlDataReader. So, we don't have close the connection. Instead, we need to close the SqlDataReader in our Finally segment.

Dim myConnection As SqlConnection

SqlConnection = new SqlConnection(ConfigurationSettings.AppSettings("DSN_pubs"))

Dim myCommand As SqlCommand

SqlCommand = new SqlCommand("Select pub_id, pub_name From publishers", myConnection)

Dim myDataReader As SqlDataReader

Try

 myConnection.Open()

 myDataReader = myCommand.ExecuteReader(CommandBehavior.CloseConnection)

 DropDownList1.DataSource = myDataReader

 DropDownList1.DataBind()

Catch myException As Exception

 Response.Write("An error has occurred: " & myException.ToString())

Finally

 If Not myDataReader Is Nothing Then

 'Notice that we close the DataReader here!

 myDataReader.Close()

 End If

End Try

Here we are directly passing the results of the ExecuteReader method to the DataSource property of the DropDownList. So, we need to close the connection, which we do in the Finally segment. Before we call the Close method we check to make sure the connection is open because attempting to close a connection that is not open will cause an exception to be thrown.

Dim myConnection As SqlConnection

SqlConnection = new SqlConnection(ConfigurationSettings.AppSettings("DSN_pubs"))

Dim myCommand As SqlCommand

SqlCommand = new SqlCommand("Select pub_id, pub_name From publishers", myConnection)

Dim myDataReader As SqlDataReader

Try

 myConnection.Open()

 'Notice that we are not using the CommandBehavior.CloseConnection enum in this example

 DropDownList1.DataSource = myCommand.ExecuteReader()

 DropDownList1.DataBind()

Catch myException As Exception

 Response.Write("An error has occurred: " & myException.ToString())

Finally

If Not myConnection Is Nothing AndAlso ((myConnection.State And ConnectionState.Open) = ConnectionState.Open) Then

myConnection.Close()

 End If

End Try

Use SQL (TDS) classes for Data Access

There are two sets of objects for accessing a data source:

· Objects prefixed OleDb (from the System.Data.OleDb namespace) use an OLE-DB provider to access that data store.

· Objects prefixed Sql (from the System.Data.SqlClient namespace) use the Microsoft SQL Server Tabular Data Stream (TDS) interface to access that data store.

The Sql prefixed objects are much faster and more efficient, and should always be used where you know that the data store will be Microsoft SQL server 7, 2000 or above. Both OleDb and Sql objects automatically provide connection pooling.

Use Data Binding where possible

Traditionally, ASP has been used to iterate through a rowset extracting values and placing them in the page. In ASP.NET, the list controls can this automatically through data binding, and provide a huge performance increase.

Compared to using ASP 3.0 with ADO to create an HTML table explicitly from a recordset, ASP.NET with a data-bound DataList control fed by a DataReader object using the OleDb data provider can be three times faster. Switch to the Sql TDS data provider and it can be up to five times faster.

Use Early Binding for Better performance

Early Binding provides much better performance than late binding. To ensure that only early binding is used, always include the Option Explicit statement in code to force variables to be pre-declared. By default, ASP.NET pages are automatically compiled with the equivalent to Option Explicit set.

Also, always specify a data type for variables when they are declared. This provides strong typing of variables for best performance. For example, use:

Dim intThis as Integer

Rather than:

Dim intThis

It’s also worth using Option Strict where possible to enforce strict variable typing. This means that variables must be explicitly cast to the correct data type for each operation that requires a type conversion. In ASP.NET enable strict compilation

Using:

<%@Page Language=”VB” Strict=”true” … %>

Use the new Request and Response Objects

In ASP.NET request and response objects have been extended to provide many new features that can improve performance. For example, to write the contents of a disk file into a page, use a new response.writefile method rather then opening the file, reading it from disk and writing it to the response.

Finally, avoid the ServerVariables collection where possible by using the new Request properties like Request.Url, Request.Referrer, Request.PhysicalPath, Request.UserAgent and so on.

Use the Web.Config/Machine.Config file to store application wide data

While you can use the web.config file to store your database connection string it is more secure to store the database connection string in the machine.config file. The machine.config file contains machine-wide settings for various parts of the .NET Framework. Most of the settings stored in the machine.config file pertain to ASP.NET.

Well, let's look at the most common situation -- the single web site. If you're building a single web site, and it has a single database supporting it, then your best bet is to store your connection information in your Web.config file. It is then very easy to retrieve this information from any of your ASP.NET pages, using the following syntax:

'VB

Dim connstring as string

connstring = ConfigurationSettings.AppSettings("ConnectionString")

To add support for this to your Web.Config, you need to add an AppSettings section, like this one:

<appSettings>

<add key="ConnectionString" value="(your connection string)" />

</appSettings>

For larger applications, which have dozens of different web applications all relying on the same database, there are several options. Since all of the columnist websites are subwebs of the root site, the easiest thing to do is to store the global config information in the root web's Web.config file.

For a server that has many different sites all using the same database (i.e. different IP addresses and domain names, not subwebs), the best solution if you want to keep all of the connection information in one place is to use the machine.config file for the server.

There is an appSettings section already in the machine.config file that serves this purpose. Whenever possible, the web.config file should be used for storing sensitive application information, and remember that all sites inherit from the machine.config, and subwebs inherit from parent webs, so store your connection info as high up in the tree hierarchy as necessary to allow all the sites that need it to access it.

Authentication

ASP.NET Authentication Options

	Type
	Description

	Windows
	ASP.NET uses Windows authentication.

	Forms
	Cookie-based, custom login forms.

	Passport
	External Microsoft provided Passport Service.

	None
	No authentication is performed.

These are the same options you have in ASP, with the exception of the new Passport authentication option. As an example, the following configuration section enables Windows-based authentication for an application:

<configuration>

 <system.web>

 <authentication mode="Windows"/>

 </system.web>

</configuration>

Authorization

Once your users have been authenticated, you can focus on authorizing what resources you would like them to have access to. The following sample shows access being granted to "jkieley" and "jstegman," while everyone else is denied access.

<authorization>

 <allow users="NORTHAMERICA\jkieley, REDMOND\jstegman"/>

 <deny users="*"/>

</authorization>

Use ASP.NET's Trace feature to debug instead of using Response.Write

A lot of classic ASP developers have got really good at using Response.Write to debug their applications. Using Response.Write to debug class ASP applications was a necessary evil. ASP.NET provides a new debugging facility in the Trace class. Tracing is much cleaner than Response.Write and can be turned on and off by simply changing a single setting in either the page or the web.config file (never again will you have to remember to comment out those Response.Write statements!).

In addition to custom debugging information, tracing also provides us with a snapshot of the Form, Querystring, Headers, Cookies, and Session collections. Also viewable in the trace information is the page's control tree and the web server variables.

We can turn tracing on at the page level (using the Trace attribute of the @Page directive) or at the application level in our web.config file. Page level tracing displays trace information for a single page and the trace information is simple tracked onto the output of the page.

Application level tracing works a little bit different than page level tracing. Instead of displaying trace information on each and every page, application level tracing provides trace information for a user definable number of requests. The localOnly attribute determines whether trace information is viewable (via a browser) remotely or only from the console of the web server. The number of requests available is set using the requestLimit attribute (shown above) of the trace element.

Each pages trace information is stored in memory and is viewable by pointing a browser at http://domainname.com/applicationname/trace.axd.

Because trace information is stored in memory, it is good practice to keep the number of requests low (less than 20).

Here is how you can turn tracing on or off in a single ASP.NET page:

<%@ Page Language="VB" Trace="True" %>

We can also turn tracing on or off for the entire ASP.NET application using syntax similar to the following (in our web.config file):

<configuration>

 <system.web>

 <trace enabled="true" requestLimit="10" localOnly="false"/>

 </system.web>

</configuration>

Then, in our ASP.NET page, we can use code such as the following to write custom trace (debug) information out to the page:

Trace.Write("This is some custom debugging information")

or

Trace.Write("This is is my variable and it's value is:" & myVariable.ToString())

Use Page.IsPostBack to avoid extra round trips to the server

If you are handling server control postbacks, you often need to execute different code the first time the page is requested from the code you do use for the round trip when an event is fired. If you check the Page.IsPostBack property, your code can execute conditionally, depending on whether there is an initial request for the page or a responce to a server control event. It might seem obvious to do this, but in practice it is possible to omit this check without changing the behavior of the page. For example:

<script language="VB" runat="server">

 Public ds As DataSet

 ...

 Sub Page_Load(sender As Object, e As EventArgs)

 ' ...set up a connection and command here...

 If Not (Page.IsPostBack)

 Dim query As String = "select * from Authors where FirstName like '%JUSTIN%'"

 myCommand.Fill(ds, "Authors")

 myDataGrid.DataBind()

 End If

 End Sub

 Sub Button_Click(sender As Object, e As EventArgs)

 Dim query As String = "select * from Authors where FirstName like '%BRAD%'"

 myCommand.Fill(ds, "Authors")

 myDataGrid.DataBind()

 End Sub

</script>

<form runat="server">

 <asp:datagrid datasource='<%# ds.Tables["Authors"].DefaultView %>' runat="server"/>

 <asp:button onclick="Button_Click" runat="server"/>

</form>

<script language="JScript" runat="server">

 public var ds:DataSet;

 ...

 function Page_Load(sender:Object, e:EventArgs) : void {

 // ...set up a connection and command here...

 if (!Page.IsPostBack) {

 var query:String = "select * from Authors where FirstName like '%JUSTIN%'";

 myCommand.Fill(ds, "Authors");

 myDataGrid.DataBind();

 }

 }

 function Button_Click(sender:Object, e:EventArgs) : void {

 var query:String = "select * from Authors where FirstName like '%BRAD%'";

 myCommand.Fill(ds, "Authors");

 myDataGrid.DataBind();

 }

</script>

<form runat="server">

 <asp:datagrid datasource='<%# ds.DefaultView %>' runat="server"/>

 <asp:button onclick="Button_Click" runat="server"/>

</form>

Storing COM Components

One thing to keep in mind is that if you rely on storing references to your legacy COM components in the Session or Application object, you cannot use the new state storage mechanisms (StateServer or SqlServer) within your application. You will need to use Inproc. This is due, in part, for the need of an object to be self-serializable in .NET terms, something that COM components obviously cannot do. New, managed components you create, on the other hand, can do this relatively easily and thus can use the new state storage models.

Disable Debug Mode

Always remember to disable debug mode before deploying a production application or conducting any performance measurements. If debug mode is enabled, the performance of your application can suffer a great deal.

How to speed up your application loading time?

Use NGEN.EXE

Use Properties Instead of Raw Data

With the addition of properties as language elements, there is absolutely no reason to declare data elements with any access level greater than private. Because client code will view properties as data elements, you don't even lose the convenience of working with simple data elements in classes. In addition, using properties gives you more flexibility and more capabilities. Properties provide better encapsulation of your data elements. Properties let you make use of lazy evaluation to return data. Lazy evaluation means that you can calculate the data value only when it is requested from a client, rather than keep it around all the time.

Finally, properties can be virtual. They can even be abstract. You can also declare properties in interfaces.

There is yet another maintenance reason: Even though they are accessed the same way, if you change a data element to a property, client code that had been compiled using the data element will no longer work with the version using the property. In fact, you can even use properties in Web services for those values you want to serialize:

 private int TheMonth = 0;

 [XmlAttribute ("Month")]

 public int Month {

 get {

 return TheMonth;

 }

 set {

 TheMonth = value;

 }

 }

Simply put, properties let you make your entire data elements private.

Pay Attention to Initialization Order

The C# language adds the concept of initializers on member variable declarations. These initializers get executed before the body of the constructor gets executed. In fact, variable initializers get executed before the base class's constructor gets executed.

For this reason, make sure any variable initializers do not make use of base class data; the base class has not yet been constructed.

Best Practices for C# .NET

As the 1st member of Microsoft® .NET Family OOP lanaguages, it exposes the all power of .NET, you need to be aware of a few best practices as follows:

· Prevent promotion of short living Objects .

· Do not make classes thread safe by default.Consider using the sealed keyword.

· Consider overriding the Equals method for value types. You can override the Equals method for value types to improve performance of the Equals method. The Equals method then uses reflection to perform the comparison. However, the overhead associated with the conversions and reflections can easily be greater than the cost of the actual comparison that needs to be performed. So, your own Equals implementation is definitely a performance booster over standard one.

· Consider private vs. public member variables. You should also avoid unnecessary public members to prevent any additional serialization overhead when you use the XmlSerializer class, which serializes all public members by default.

· Boxing causes a heap allocation and a memory copy operation. To avoid boxing, do not treat value types as reference types. Avoid passing value types in method parameters that expect a reference type. Where boxing is unavoidable, to reduce the boxing overhead, box your variable once and keep an object reference to the boxed copy as long as needed, and then unbox it when you need a value type again.

There are several ways to measure the impact of boxing operations. Search for box and unbox instructions in MSIL by using the following command line.

Ildasm.exe yourcomponent.dll /text | findstr box

Ildasm.exe yourcomponent.dll /text | findstr unbox

This approach will be useful when working with certain controls, say, tab controls.Always create controls on visible tab, i.e., we have 3 tabs on the current page for the 1st time, only tab 1 is visible. Create other controls when tab selected. To achieve this, use SelectedIndexChanged event of the tab control.

· Ideally, VS.NET uses Control.Add to link parent-child controls, which in turn, triggers repeated scans of the application window collection. All application windows stored in an ArrayList. So, It would be more efficient to explicitly set child controls Parent property. You can use following Code snippet to gain the performance, which is called parent-child linking.

panel1.Parent = this;
tabControl1.Parent = panel1;
tabPage1.Parent = tabControl1;
label1.Parent = tabPage1;
textBox1.Parent = tabPage1;
· If you implement custom value types (struct in C#), you should consider overriding the ToString() method. If you do not override this method, calls to ToString on your value type will cause the type to be boxed. This is also true for the other methods that are inherited from System.Object, in that case, Equals, though ToString is probably the most often called method. If you would like to know if and when your value type is being Boxed, you can look for the box instruction in the the MSIL using the ildasm.exe utility (as in the snippet above).

struct Point

{

 public int x;

 public int y;

 //This will prevent type being boxed when ToString is called

 public override string ToString()

 {

 return x.ToString() + "," + y.ToString();

 }

}

· Use for loop instead of foreach (C#) to iterate the contents of arrays or collections in performance critical code, particularly if you do not need the protections offered by foreach. Both foreach in C# and For Each in Visual Basic .NET use an enumerator to provide enhanced navigation through arrays and collections.

· If you can use the for statement to iterate over your collection, consider doing so in performance sensitive code to avoid that overhead.

· Consider SuppressUnmanagedCodeSecurity for performance-critical trusted scenarios. Prefer declarative demands rather than imperative demands.

· Consider using link demands rather than full demands for performance-critical, trusted scenarios. Never Write unnecessary try-catch code,make sure that behavior is correct by default.
Look at the following piece of code. What's wrong with this code?

public struct Bignum

{

 public static Bignum Parse(string number)

 {

 bool badNumber = false;

 // conversion code here...

 if (badNumber)

 {

 throw new ArgumentException("Bad string", “number”);

 }

 return new Bignum(number);

 }

}
The alternative way of doing the same parsing mechanism is as follows.

public struct Bignum
{
 public static Bignum Parse(string num) {...}

 public static bool TryParse(string num, out Bignum result) {...}
}

· Never Rethrow using “throw e”, because by doing this, application loses stack frame information . What's wrong with following code?

public void Process(string filename)

{

 try {

 processor.Process(filename);

 }

 catch (Exception e)

 {

 writer.WriteLine(e);

 throw e;

 }

}
Following is good Rethrow mechanism.

public void Process(string filename)

{

 try

 {

 processor.Process(filename);

 }

 catch (Exception e)

 {

 writer.WriteLine(e);
 throw;
 }

}
· Do not Call GC.Collect() , Do Let the GC do its work.Use the “using” statement or call Dispose() to help the GC clean up early.
· It is not necessary to set method variables to null, this pattern is detrimental in that it denies the garbage collector the ability to free memory sooner. Because the method level variables are kept in scope until the absolute end of the method, the memory they consume can not be collected until the method finishes. If these variables were not referenced in the finally block, they could potentially be collected before the method ends.

function myfunc()

{

try{

 //Some thing with param Collection, sales qty
}

catch (YourExceptoion e){…}

finally

{

paramCollection = null; //Not required inside procedure

inParamSalesQty = null;

inParamUnSaleablesPercentage = null;

 }

}
· Use “ref” parameters instead of unsafe block ,while using the external API calls.

[DllImport("user32.dll")]

private unsafe static extern bool

 GetWindowRect(IntPtr hwnd, Rect* rectangle);

// Wrap Win32 GetWindowRect Function

// BOOL GetWindowRect(HWND hWnd, LPRECT lpRect);

Alter the call to kernel32 API as follows:-

[DllImport("user32.dll")]

private unsafe static extern bool

 GetWindowRect(IntPtr hwnd, ref Rect rectangle);

Hard Coding

· Constants should be used in place of hard-coding wherever possible; similarly, exception strings should always come from the ResourceManager and not be hard-coded.

Variable Names

· Do not use single-letter names, except for i, j, and k for loop variables.

· Use exp as the local exception variable in a try…catch statement.

· Use professional names. Do not use offensive language, for example, "foo" and "bar".

ADO.NET Class Variables

· Express the name of DataTable variables in the plural form. For example, use Employees rather than Employee.

· Do not repeat the table name in the column name. If the DataTable name is Employee, LastName is preferred over EmployeeLastName. The exception is for ID fields contained in multiple tables, so that that Employees table may contain an EmployeeID field.

· Do not incorporate the data type in the name of a column. If the data type is later changed, and the column name is not changed, the column name would be misleading. For example, LastName is preferred over stringLastName.

Comments

· Comment each type, each non-public type member, and each region declaration.

· Use end-line comments only on variable declaration lines. End-line comments are comments that follow code on a single line.

· Do not create formatted blocks of asterisks that surround comments.

· Separate comments from comment delimiters (apostrophe) with one space.

· Begin the comment text with an uppercase letter.

· End the comment with a period.

· If the comment starts with a verb, it should be in the imperative (Loop, Add, Write, and so forth).

· Explain the code; do not repeat it.

Format

· Indent continuation lines one tab stop.

· Write only one statement per line.

· Add at least one blank line between method and property definitions.

· Define only one type (class, enum, interface, and so forth) in each file.

Using Finalize and Dispose

· Only implement Finalize on objects that require finalization. There are performance costs associated with Finalize methods.

· If you require a Finalize method, you should consider implementing IDisposable to allow users of your class to avoid the cost of invoking the Finalize method.

· Do not make the Finalize method more visible. It should be protected, not public.

· An object's Finalize method should free any external resources that the object owns. Moreover, a Finalize method should release only resources that are held onto by the object. The Finalize method should not reference any other objects.

· Implement the dispose design pattern on a type that encapsulates resources that explicitly need to be freed. Users can free external resources by calling the public Dispose method.

· Implement the dispose design pattern on a base type that commonly has derived types that hold on to resources, even if the base type does not. If the base type has a close method, often this indicates the need to implement Dispose. In such cases, do not implement a Finalize method on the base type. Finalize should be implemented in any derived types that introduce resources that require cleanup.

· Free any disposable resources a type owns in its Dispose method.

· After Dispose has been called on an instance, prevent the Finalize method from running by calling the GC.SuppressFinalize Method. The exception to this rule is the rare situation in which work must be done in Finalize that is not covered by Dispose.

· Call the base class's Dispose method if it implements IDisposable.

· Do not assume that Dispose will be called. Unmanaged resources owned by a type should also be released in a Finalize method in the event that Dispose is not called.

· Throw an ObjectDisposedException from instance methods on this type (other than Dispose) when resources are already disposed. This rule does not apply to the Dispose method because it should be callable multiple times without throwing an exception.

· Propagate the calls to Dispose through the hierarchy of base types. The Dispose method should free all resources held by this object and any object owned by this object. For example, you can create an object like a TextReader that holds onto a Stream and an Encoding, both of which are created by the TextReader without the user's knowledge. Furthermore, both the Stream and the Encoding can acquire external resources. When you call the Dispose method on the TextReader, it should in turn call Dispose on the Stream and the Encoding, causing them to release their external resources.

· You should consider not allowing an object to be usable after its Dispose method has been called. Recreating an object that has already been disposed is a difficult pattern to implement.

· Allow a Dispose method to be called more than once without throwing an exception. The method should do nothing after the first call.

Exception Handling

· All code paths that result in an exception should provide a method to check for success without throwing an exception. i.e. to avoid a FileNotFoundException we can call File.Exists. This might not always be possible, but the goal is that under normal execution no exceptions should be thrown.

· End Exception class names with the Exception suffix as in the following code example.

· Use the common constructors shown in the following code example when creating exception classes.

· In most cases, use the predefined exception types. Only define new exception types for programmatic scenarios, where you expect users of your class library to catch exceptions of this new type and perform a programmatic action based on the exception type itself. This is in lieu of parsing the exception string, which would negatively impact performance and maintenance.

· For example, it makes sense to define a FileNotFoundException because the developer might decide to create the missing file. However, a FileIOException is not something that would typically be handled specifically in code.

· Do not derive all new exceptions directly from the base class SystemException. Inherit from SystemException only when creating new exceptions in System namespaces. Inherit from ApplicationException when creating new exceptions in other namespaces.

· Use a localized description string in every exception. When the user sees an error message, it will be derived from the description string of the exception that was thrown, and never from the exception class.

· Do not expose privileged information in exception messages. Information such as paths on the local file system is considered privileged information. Malicious code could use this information to gather private user information from the computer.

· Do not use exceptions for normal or expected errors, or for normal flow of control.

· Be aware that the stack trace starts at the point where an exception is thrown, not where it is created with the new operator. Consider this when deciding where to throw an exception.

· Throw exceptions instead of returning an error code or HRESULT.

· Throw the most specific exception possible.

· Errors that occur at the same layer as a component should throw an exception that is meaningful to target users. In the following code example, the error message is targeted at users of the TextReader class, attempting to read from a stream.

· Exception Handling should be used consistently throughout the application. “Silent” and unlogged errors should be eliminated.

· When a new exception is created and thrown, set the .Source property so that the information can be used by logging applications and for diagnostic purposes.

Localization

· Use the AutoSize property where possible.

· Do not hide or overlap controls.

· Do not line up controls to create a sentence.

· Do not build strings by stripping out characters from another string. A common example is reusing a menu string in a dialog and removing the access key. This will not work for localized languages because access keys are displayed differently in different languages. For example, if you have &File in English, you would have File (&F) in Japanese. Use different strings if they have different purposes.

· Use culture-neutral graphics.

· Use only Tahoma or MS Sans Serif fonts.

· In Web forms, set the form's PageLayout property to FLowLayout rather than GridLayout.

· CurrentUICulture is the property for the application UI language. By default, CurrentUICulture will match the system settings for UserUILanguage. This does not need to be overridden for samples, unless you want to show a localization sample.

Accessibility

· Use colors from the System tab of the color picker.

· Use accelerators for all menus, labels, buttons, and so on.

· Set control properties as described in the following table.

	Property
	Setting

	AccessibleDescription
	A description of the control.

	AccessibleName
	A name for the control.

	AccessibleRole
	Default, or
reset this property if a control has another role.

	TabIndex
	Set in a logical order.

	Text
	All clickable controls should have a keyboard access key (shortcut).

	Font size
	Default or set to 10 points or larger

	Forecolor
	Default

	Backcolor
	Default

	BackgroundImage
	Default

Projects and Solutions

· Put all code in a project or solution.

· Include in each solution a ReadMe.htm file that includes the title, features, requirements, and directions for running the application.

· Include setup projects in Web forms and XML Web Service solutions.

· Delete the bin and obj directories before distributing a sample.

· Use the default encoding to save files.

· Update the AssemblyTitle and AssemblyDescription in the AssemblyInfo.cs file.

Best Practices for VB .NET
Names

· Do not use single-letter names, except for i, j, and k for loop variables.

· Use exp as the local exception variable in a Try…Catch statement.

· Use professional names. Do not use offensive language, for example, "foo" and "bar".

ADO.NET Class Variables

· Express the name of DataTable variables in the plural form. For example, use Employees rather than Employee.

· Do not repeat the table name in the column name. If the DataTable name is Employee, LastName is preferred over EmployeeLastName. The exception is for ID fields contained in multiple tables, so that that Employees table may contain an EmployeeID field.

· Do not incorporate the data type in the name of a column. If the data type is later changed, and the column name is not changed, the column name would be misleading. For example, LastName is preferred over stringLastName.
Comments

· Comment each type, each non-public type member, and each region declaration.

· Use end-line comments only on variable declaration lines. End-line comments are comments that follow code on a single line.

· Do not create formatted blocks of asterisks that surround comments.

· Separate comments from comment delimiters (apostrophe) with one space.

· Begin the comment text with an uppercase letter.

· End the comment with a period.

· If the comment starts with a verb, it should be in the imperative (Loop, Add, Write, and so forth).

· Explain the code; do not repeat it.

Format

· Use the "Pretty Listing" feature (in the Tools Options dialog box) of Visual Basic .NET to format the code. Use the default settings for the pretty listing feature (Smart indenting, Tab 4, Indent 4, Insert spaces).

· Indent continuation lines one tab stop.

· Write only one statement per line.

· Add at least one blank line between method and property definitions.

· Define only one type (class, enum, interface, and so forth) in each file.

General Usage

· Always try to write CLS Compliant Code so that the same can be used by code written in other language as well.

· Use Visual Basic runtime methods rather than .NET Framework objects.

· By default all methods in VB.Net is virtual. Declare the same as Non Virtual unless a virtual method is required.

· Use the short method for instantiating classes.

'Preferred.

Dim Employees As New Collection()

'Not preferred

Dim Employees As Collection() = New Collection

· Do not explicitly instantiate a delegate in the AddHandler statement.

· Use the Declare statement rather than the DllImport attribute to access native APIs.

· Avoid use of single-line If statement. Make sure that the else part is always taken care of i.e.

· Declare the array length with the variable name.

'Preferred.

Dim Buttons(4) As Button

'Not preferred

Dim Buttons() As Button = New Button(){}

· Use Try…Catch rather than "On Error".

· Use a Handles clause rather than an AddHandler statement.

· Use CStr() instead of Str().

· Use CInt() instead of Int().

· Use Option Strict On, either as a project setting, or as a statement in each file.

· Use Option Explicit On, either as a project setting, or as a statement in each file.

· Use the complete class name when applying an attribute.

· Use shared methods in classes rather than global methods in modules.

· Do not use type characters ($, %, and so on).

· Do not use Call.

· Specify the prompt and title of MsgBox calls.

· Provide operator-overloading methods only in the class in which the methods are defined. The C# compiler enforces this guideline.

· Implement the GetHashCode method whenever you implement the Equals method. This keeps Equals and GetHashCode synchronized.

· Override the Equals method whenever you implement ==, and make them do the same thing. This allows infrastructure code such as Hashtable and ArrayList, which use the Equals method, to behave the same way as user code written using ==.

· Override the Equals method any time you implement the IComparable Interface.

· You should consider implementing operator overloading for the equality (==), not equal (!=), less than (<), and greater than (>) operators when you implement IComparable.

· Do not throw exceptions from the Equals or GetHashCode methods or the equality operator (==).

· Do not allow implicit casts that will result in a loss of precision. For example, there should not be an implicit cast from Double to Int32, but there might be one from Int32 to Int64.

· Do not throw exceptions from implicit casts because it is very difficult for the developer to understand what is happening.

· Provide casts that operate on an entire object. The value that is cast should represent the entire object, not a member of an object. For example, it is not appropriate for a Button to cast to a string by returning its caption.

· Do not generate a semantically different value. For example, it is appropriate to convert a DateTime or TimeSpan into an Int32. The Int32 still represents the time or duration. It does not, however, make sense to convert a file name string such as "c:\mybitmap.gif" into a Bitmap object.

· Do not cast values from different domains. Casts operate within a particular domain of values. For example, numbers and strings are different domains. It makes sense that an Int32 can cast to a Double. However, it does not make sense for an Int32 to cast to a String, because they are in different domains.

· Do not set local variables to after usage, let the GC do its work.

· The DirectCast keyword introduces a type conversion operation. You use it the same way you use the CType keyword, as the following example shows:

Dim Q As Object = 2.37 ' Requires Option Strict to be Off.

Dim I As Integer = CType(Q, Integer) ' Succeeds.

Dim J As Integer = DirectCast(Q, Integer) ' Fails.

Both keywords take an expression to be converted as the first argument, and the type to convert it to as the second argument. Both conversions fail if there is no conversion defined between the data type of the expression and the data type specified as the second argument. The difference between the two keywords is that CType succeeds as long as there is a valid conversion defined between the expression and the type, whereas DirectCast requires the run-time type of an object variable to be the same as the specified type. If the specified type and the run-time type of the expression are the same, however, the run-time performance of DirectCast is better than that of CType. In the preceding example, the run-time type of Q is Double. CType succeeds because Double can be converted to Integer, but DirectCast fails because the run-time type of Q is not already Integer. DirectCast throws an InvalidCastException error if the argument types do not match.

Using Finalize and Dispose

· Only implement Finalize on objects that require finalization. There are performance costs associated with Finalize methods.

· If you require a Finalize method, you should consider implementing IDisposable to allow users of your class to avoid the cost of invoking the Finalize method.

· Do not make the Finalize method more visible. It should be protected, not public.

· An object's Finalize method should free any external resources that the object owns. Moreover, a Finalize method should release only resources that are held onto by the object. The Finalize method should not reference any other objects.

· Implement the dispose design pattern on a type that encapsulates resources that explicitly need to be freed. Users can free external resources by calling the public Dispose method.

· Implement the dispose design pattern on a base type that commonly has derived types that hold on to resources, even if the base type does not. If the base type has a close method, often this indicates the need to implement Dispose. In such cases, do not implement a Finalize method on the base type. Finalize should be implemented in any derived types that introduce resources that require cleanup.

· Free any disposable resources a type owns in its Dispose method.

· After Dispose has been called on an instance, prevent the Finalize method from running by calling the GC.SuppressFinalize Method. The exception to this rule is the rare situation in which work must be done in Finalize that is not covered by Dispose.

· Call the base class's Dispose method if it implements IDisposable.

· Do not assume that Dispose will be called. Unmanaged resources owned by a type should also be released in a Finalize method in the event that Dispose is not called.

· Throw an ObjectDisposedException from instance methods on this type (other than Dispose) when resources are already disposed. This rule does not apply to the Dispose method because it should be callable multiple times without throwing an exception.

· Propagate the calls to Dispose through the hierarchy of base types. The Dispose method should free all resources held by this object and any object owned by this object. For example, you can create an object like a TextReader that holds onto a Stream and an Encoding, both of which are created by the TextReader without the user's knowledge. Furthermore, both the Stream and the Encoding can acquire external resources. When you call the Dispose method on the TextReader, it should in turn call Dispose on the Stream and the Encoding, causing them to release their external resources.

· You should consider not allowing an object to be usable after its Dispose method has been called. Recreating an object that has already been disposed is a difficult pattern to implement.

· Allow a Dispose method to be called more than once without throwing an exception. The method should do nothing after the first call.

Error Handling

· All code paths that result in an exception should provide a method to check for success without throwing an exception. i.e. to avoid a FileNotFoundException we can call File.Exists. This might not always be possible, but the goal is that under normal execution no exceptions should be thrown.

· End Exception class names with the Exception suffix as in the following code example.

[Visual Basic]

Public Class FileNotFoundException

Inherits Exception

' Implementation code goes here.

End Class

· Use the common constructors shown in the following code example when creating exception classes.

[Visual Basic]

Public Class XxxException

 Inherits ApplicationException

 Public Sub New()

 ' Implementation code goes here.

 End Sub

 Public Sub New(message As String)

 ' Implementation code goes here.

 End Sub

 Public Sub New(message As String, inner As Exception)

 ' Implementation code goes here.

 End Sub

 Public Sub New(info As SerializationInfo, context

As StreamingContext)

 ' Implementation code goes here.

 End Sub

End Class

· In most cases, use the predefined exception types. Only define new exception types for programmatic scenarios, where you expect users of your class library to catch exceptions of this new type and perform a programmatic action based on the exception type itself. This is in lieu of parsing the exception string, which would negatively impact performance and maintenance.

· For example, it makes sense to define a FileNotFoundException because the developer might decide to create the missing file. However, a FileIOException is not something that would typically be handled specifically in code.

· Do not derive all new exceptions directly from the base class SystemException. Inherit from SystemException only when creating new exceptions in System namespaces. Inherit from ApplicationException when creating new exceptions in other namespaces.

· Use a localized description string in every exception. When the user sees an error message, it will be derived from the description string of the exception that was thrown, and never from the exception class.

· Do not expose privileged information in exception messages. Information such as paths on the local file system is considered privileged information. Malicious code could use this information to gather private user information from the computer.

· Do not use exceptions for normal or expected errors, or for normal flow of control.

· Be aware that the stack trace starts at the point where an exception is thrown, not where it is created with the new operator. Consider this when deciding where to throw an exception.

· Throw exceptions instead of returning an error code or HRESULT.

· Throw the most specific exception possible.

· Errors that occur at the same layer as a component should throw an exception that is meaningful to target users. In the following code example, the error message is targeted at users of the TextReader class, attempting to read from a stream.

Public Class ExceptionDemo

 Public Function DoMethod() As String

 Try

' Implementation code goes here.

 Catch exp As Exception

Throw New XXXException (“Error Message Goes Here”, exp)

 End Try

 End Function

End Class

Localization

· Use the AutoSize property where possible.

· Do not hide or overlap controls.

· Do not line up controls to create a sentence.

· Do not build strings by stripping out characters from another string. A common example is reusing a menu string in a dialog and removing the access key. This will not work for localized languages because access keys are displayed differently in different languages. For example, if you have &File in English, you would have File (&F) in Japanese. Use different strings if they have different purposes.

· Use culture-neutral graphics.

· Use only Tahoma or MS Sans Serif fonts.

· In Web forms, set the form's PageLayout property to FLowLayout rather than GridLayout.

· CurrentUICulture is the property for the application UI language. By default, CurrentUICulture will match the system settings for UserUILanguage. This does not need to be overridden for samples, unless you want to show a localization sample.

Accessibility

· Use colors from the System tab of the color picker.

· Use accelerators for all menus, labels, buttons, and so on.

· Set control properties as described in the following table.

	Property
	Setting

	AccessibleDescription
	A description of the control.

	AccessibleName
	A name for the control.

	AccessibleRole
	Default, or
reset this property if a control has another role.

	TabIndex
	Set in a logical order.

	Text
	All clickable controls should have a keyboard access key (shortcut).

	Font size
	Default or set to 10 points or larger

	Forecolor
	Default

	Backcolor
	Default

	BackgroundImage
	Default

Projects and Solutions

· Put all code in a project or solution.

· Include in each solution a ReadMe.htm file that includes the title, features, requirements, and directions for running the application.

· Include setup projects in Web forms and XML Web Service solutions.

· Delete the bin and obj directories before distributing a sample.

· Use the default encoding to save files.

Update the AssemblyTitle and AssemblyDescription in the AssemblyInfo.vb file.[image: image1.png]

Select the document classification as per the defined classification in the master list of documents’ for your project <VERY CONFIDENTIAL/CONFIDENTIAL/INTERNALLY RESTRICTED/PUBLIC> Page 47 of 57

